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Abstract. Diabetes, resulting from inadequate insulin production or
utilization, causes extensive harm to the body. Existing diagnostic meth-
ods are often invasive and come with drawbacks, such as cost constraints.
Although there are machine learning models like Classwise k Nearest
Neighbor (CkNN) and General Regression Neural Network (GRNN),
they struggle with imbalanced data and result in underperformance.
Leveraging advancements in sensor technology and machine learning,
we propose a non-invasive diabetes diagnosis using a Back Propagation
Neural Network (BPNN) with batch normalization, incorporating data
re-sampling and normalization for class balancing. Our method addresses
existing challenges such as limited performance associated with tradi-
tional machine learning. Experimental results on three datasets show
significant improvements in overall accuracy, sensitivity, and specificity
compared to traditional methods. Notably, we achieve accuracies of
89.81% in Pima diabetes dataset, 75.49% in CDC BRFSS2015 dataset,
and 95.28% in Mesra Diabetes dataset. This underscores the potential
of deep learning models for robust diabetes diagnosis. See project website
https://steve-zeyu-zhang.github.io/DiabetesDiagnosis

Keywords: AI for Health · Diabetes Diagnosis · Unbalanced Data ·
Neural Network

1 Introduction

Diabetes Mellitus (DM) is a chronic disease, originating from the Greek word
diabetes, characterized by persistently high blood glucose levels [28]. It adversely
affects the heart, blood vessels, eyes, kidneys, and nerves, doubling the risk of
vascular disorders in individuals with diabetes [8]. Evidence suggests a strong
association between diabetes and certain malignancies (e.g., liver cancer) and
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other non-vascular illnesses [12,14,17]. By the end of 2019, diabetes became the
ninth leading cause of death, rising by 70% since 2000, with an 80% increase
in male fatalities [25]. Diabetes directly caused 1.5 million deaths worldwide,
48% before the age of 70 [9]. Currently, 37.3 million people in the US, or 11.3%
of the population, have diabetes, with 8.5 million undiagnosed individuals [11].
Early diagnosis and treatment are crucial to prevent health risks as a “Silent
Killer” [7,13]. Implementing accurate prediction and monitoring approaches can
significantly reduce the risk of developing the disease [29].

Currently, the majority of methods for predicting and diagnosing diabetes
still rely on blood glucose level measurement [40]. Specifically, invasive blood
glucose laboratory tests and glucometers are standard solutions for glucose
monitoring at hospitals and homes, respectively [23]. Although these methods
can provide relatively accurate test results, some evident disadvantages, such
as stringent demand for skills and types of equipment, prohibitive costs, time-
consuming, and the pain associated with testing, cannot be ignored [37].

In comparison, machine learning and deep learning-based diabetes diagnosis
gather data from real-world datasets, which does not require special instruments
and has the advantages of low cost and high efficiency. The most commonly used
dataset is the Pima Diabetes dataset carried out by the US National Institute of
Diabetes and Digestive and Kidney Diseases (NIDDK) [3,19,20] and available at
the University of California Irvine Machine Learning Repository [5]. There are
other well-known datasets that can be used in Diabetes diagnosis, such as CDC
BRFSS 2015 Diabetes Health Indicators Dataset [10,34,39], and BIT Mesra Dia-
betes Dataset 2019 [35,36]. In the datasets utilized, the types of data encompass
various symptomatic observations and body measurements associated with dia-
betes. The outcome or target variable is binary, indicating whether an individual
has diabetes (positive) or does not have diabetes (negative). It is important to
note that all the features employed in the datasets are acquired through non-
invasive methods. However, it is crucial to acknowledge the absence of the gold
standard diagnostic criteria for diabetes, such as blood glucose level, in the data
collection process.

Some machine learning methods have been proposed for diabetes prediction
and achieved some encouraging progress with the three datasets mentioned ear-
lier, for example, Classwise k Nearest Neighbor (CkNN) from Christobel’s work
[6] and regression neural network (GRNN) from Kayaer’s work [10]. They tend to
be statistical learning methods or feed-forward neural networks. Moreover, most
of these models, such as Multi-Layer Feed Forward Neural Networks (MLFNN)
from Kumar’s work [21], have been only validated on a single dataset without
indicating sensitivity and specificity, which leads to a relatively limited persua-
siveness. Smith et al. [33] designed a prediction model based on an early neural
network model, ADAP [31,32], which is an adaptive learning method that gen-
erates and executes digital analogs of perceptron-like devices. They tested it on
the Pima Indians diabetes dataset, and the performance was measured by sen-
sitivity and specificity, which achieved 76% at the crossover point. Wahba et al.
[38] applied two models on diabetes datasets, penalized log-likelihood smoothing
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spline analysis of variance (PSA) and Generalized Linear Models (GLIM) [24],
which achieved accuracies of 72% and 74%, respectively. Breault et al. [4] imple-
mented a data mining algorithm, Rough sets [26], with the standard/tuned vot-
ing method (RSES) on the Pima diabetes dataset. Out of 392 complete cases, the
model achieved a predictive accuracy of 73.8% with a 95% CI of (71.3%, 76.3%).
Christobel et al. [6] addressed the missing value in the Pima diabetes dataset
using the mean method and implemented a new Classwise k Nearest Neigh-
bor (CkNN) algorithm for the prediction of diabetes. Through 10-fold cross-
validation, the algorithm has achieved an accuracy of 78.16%. Kumari et al. [22]
proposed a classifier using Support Vector Machine (SVM) on Pima Indians dia-
betes dataset. The experimental results obtained an accuracy of 75.5% for RBF
kernel SVM and 78.2% for SVM classification. Ahmad et al. [1] designed a hybrid
method that consists of an improved genetic algorithm (GA) for simultaneous
parameter tuning and feature selection and a multi-layer perceptron (MLP) for
classification. The model they developed obtained an accuracy of 80.4% on the
Pima dataset. Kayaer et al. [18] developed a model based on General Regression
Neural Network (GRNN), which consists of an input layer, two hidden layers (32
and 16 neurons, respectively), and an output layer with only one neuron. The
classifier was examined on the Pima Indian dataset and achieved an accuracy
of 80.21%. Kumar et al. [21] developed a classification model based on Multi-
Layer Feed Forward Neural Networks (MLFNN), and achieved 81.73% accuracy
on the Pima diabetes dataset using the mean method for missing values. Polat
et al. [27] developed a classification model on the Pima dataset using General-
ized Discriminant Analysis combined with Least Square Support Vector Machine
(GDA-LS-SVM). Using 10-fold cross-validation, they achieved 79.16% accuracy.

However, these methods may also have some imperfections. For instance,
some methods, such as the ADAP algorithm from Smith’s work [31,32] and the
Rough set algorithm from Breault’s work [4], may have trained with imbalanced
data directly without using the proper data preprocessing methods. This might
lead the classifier to be biased toward the majority (negative) class and result
in low sensitivity. Others may be designed a model that is not powerful enough
or used an inappropriate model as the backbone for binary classification.

The primary objective of this paper is to propose and develop a deep-learning
model and pipeline specifically designed for diabetes diagnosis. Our focus lies in
leveraging data obtained through non-invasive methods as the sole input for our
model. By solely relying on non-invasive data collection approaches, we aim to
enhance the practicality and feasibility of the proposed solution for real-world
applications. The developed model and pipeline strive to achieve accurate and
reliable diabetes diagnosis based solely on non-invasive data, thereby mitigating
the need for invasive diagnostic procedures and improving patient experience
and convenience. We proposed a model based on Back Propagation Neural Net-
work (BPNN) combined with batch normalization. The main contribution of
this paper could be summarized as follows.

– We improved the sensitivity through implementing undersample-balancing in
the procedure of data preprocessing.
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– We proposed a deep learning model based on Back Propagation Neural Net-
work (BPNN) for diabetes diagnosis. Specifically, by updating losses and
biases through backward propagation, the accuracy of samples that are diffi-
cult to classify in some datasets has also been improved substantially.

– We conduct experiments on four distinct real-world datasets with differ-
ent features and dimensions. The horizontal comparison of the results indi-
cates the superior performance of BPNN in terms of accuracy, among other
approaches.

2 Methodology

Data Pre-Processing Data Loading Neural Network

Fig. 1. Workflow of Proposed Method: The pipeline encompasses crucial components,
including data undersampling to address class imbalance in the dataset. The Work-
flow of our proposed method illustrates the data scaling procedure for effective feature
normalization. The backbone of the pipeline consists of a Back Propagation Neural Net-
work (BPNN) architecture, enhanced with batch normalization, to facilitate automatic
diabetes diagnosis. This comprehensive pipeline demonstrates potential for accurate
and automated diabetes classification.

In this section, we outline our deep learning model for diabetes diagnosis and
its structure. We chose a Back-Propagation Neural Network (BPNN) due to its
superior representation and feature extraction capabilities compared to other
statistical machine learning methods. The BP algorithm works by iteratively
updating the network’s weights and biases based on the error between the pre-
dicted outputs and the actual targets from a set of training examples. The algo-
rithm starts with a forward pass (feedforward) to compute the activations of
each neuron in the network and then calculates the output error. It then propa-
gates this error backward through the layers (backpropagate error), computing
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the errors for each neuron in each layer. Finally, the gradients of the cost func-
tion with respect to the weights and biases are computed using the errors, which
are used to update the weights and biases in the network, thereby improving its
ability to diagnose diabetes accurately. The BPNN is shown in Fig. 2, which is
built up by full connections of an input layer, three hidden layers, and an output
layer. The input layer possesses the same number of neurons as the features. The
number of neurons in the hidden layers is 64, 32, and 16, respectively. Eventually,
we have two neurons in the output layer referring to the two output classes.

In Fig. 2, each fully connected arrow stands for a feed-forward process. The
sigmoid activation function has been implemented for each layer, and the output
of each layer has been normalized. We implement batch normalization [15] to
improve the training speed and stability, as well as to mitigate the issue of
internal covariate shift, thus enhancing the overall performance of our BPNN
for diabetes diagnosis. The algorithm computes the mean and variance of inputs
within a batch of training samples and then normalizes the inputs by subtracting
the mean and dividing by the square root of the variance. This normalization
step helps stabilize and speed up the training process. During inference, batch
normalization uses running averages of the batch mean and variance to normalize
the inputs, along with scaling and shifting parameters to obtain the final outputs
of the layers, ensuring the network performs well on new, unseen data.

For the back propagation, the figure demonstrates a standard or typical MLP,
not a Single-Layer perceptron. For standard MLP, it uses BP to update weight
& bias. We used the cross-entropy loss as the loss function and the adaptive
moment estimation (ADAM) to search for the minima of the loss function.

The hyperparameter mentioned above is determined by grid search, which is
explained in detail in Sect. 3.2. In this process, a predefined set of hyperparameter
values is defined for each hyperparameter (e.g., hidden layers, activation func-
tion, optimizer, mini-batch size), and the model’s performance is evaluated for
all possible combinations of these values using cross-validation. The combination
that results in the best performance metric (e.g., accuracy, loss) on the valida-
tion set is then selected as the optimal set of hyperparameters for the model.
Utilizing grid search, we employed an exhaustive search technique to identify the
optimal hyperparameter configuration for the proposed Back Propagation Neu-
ral Network (BPNN) model. This systematic approach enabled us to maximize
the performance of the BPNN by selecting the combination of hyperparameters
that yielded the highest performance metrics.

3 Experiment

In this section, we evaluate the effectiveness of BPNN model on Pima Indian
diabetes dataset and compare it with some statistical learning methods, other
deep learning methods, and some existing methods done by related works.

The stages of the experiment could be generally described as (1) Data Pre-
processing, (2) Hyperparameter tuning of BPNN, and (3) Validation, which is
shown in Fig. 1. The proposed pipeline’s workflow involves three main steps for



92 Z. Zhang et al.

Back Propagation

Fig. 2. Structure of BPNN

improving the performance of the model in handling unbalanced data. Firstly,
an undersampling technique is applied to balance the class distribution in the
dataset. Secondly, standardization is performed to scale the data, ensuring con-
sistency in feature magnitudes. Lastly, the processed data is used to train a
Back Propagation Neural Network (BPNN) model, adopting a five-fold cross-
validation approach to assess its performance and ensure robustness in the eval-
uation process.

3.1 Data Preprocessing

Overview of Dataset. Pima Indian diabetes dataset is provided by National
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the
Applied Physics Laboratory of the Johns Hopkins University [3]. The dataset
provided 768 females at least 21 years old of Pima Indian heritage who responded
to the survey. The dataset consists of several medical predictors (i.e. independent
variables) and a target (dependent) variable, Outcome. Independent variables
include the number of pregnancies the sample has had, their age, BMI, blood
pressure (BP), insulin level, and so on. The correlation matrix of Pima dataset is
shown in Fig. 3. Based on specific diagnostic metrics present in the dataset, the
goal of the dataset is to diagnostically forecast whether a patient has diabetes
or not.
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Fig. 3. Correlation matrix of Pima dataset: The figure displays the correlation matrix
of the Pima dataset, providing a visual representation of the interrelationships between
the variables within the dataset.

Data Balancing. When one class dominates the other classes in a dataset rel-
ative to the target class variable, the dataset is said to be imbalanced [16]. How-
ever, classification algorithms are designed to assume that the dataset is balanced
[16]. When a classifier is trained using an imbalanced dataset, it will probably
be biased towards the majority class, which means that the performance of the
classifier will be better at predicting the majority class than the minority class
[16]. Eventually, it will result in low sensitivity. Thus, an imbalanced dataset will
introduce bias during training. Therefore, balancing imbalanced datasets is one
of the most essential methods in data preprocessing since it will help reduce bias
in the prediction, and thereby enhance the performance of the classifier.

The initial Pima dataset exhibited an imbalanced distribution, comprising
268 positive instances (with diabetes) and 500 negative instances (without dia-
betes). The Pima Indian diabetes dataset is a highly imbalanced data since the
size of the negative class is significantly larger than the size of the positive class.
To address this class imbalance, we applied a data undersampling technique.
Undersampling is a technique that balances the dataset by randomly reducing
the size of the majority class until reaching the size of the minority class. Despite
it might discard some samples from the original dataset, it will not introduce
any bias to training and is considered to be one of the most widely used data
balancing methods. Consequently, the dataset was rebalanced, resulting in an
equal number of instances, namely 268 instances in each class.

Data Scaling. It is well known that most machine learning methods evaluate
the data distance or similarity (e.g., Euclidean distance) to make inferences and



94 Z. Zhang et al.

predictions. However, few features are measured on the same scale. Specifically,
the majority of the features are either different in magnitudes or different in
units. Hence, scaling the data will bring every feature the same contribution
to the classification, which will enhance the performance of classification algo-
rithms [2]. Scaling will also reduce the time spent training. If the values of the
features are closer to each other, it will accelerate the process for the classifier to
understand the data and speed up the process of convergence of gradient descent
[15,30].

There are two major approaches for scaling the data: normalization and
standardization. Hence, we choose standardization as our scaling method since
it does not harm the position of outliers, wherein the normalization captures all
the data in a certain range. The distribution of the features before and after
scaling is shown in Fig. 4.

For standardization, we have

xstand =
x − x̄

σ(x)
(1)

where σ(x) refers to the standard deviation of x.

Data Visualization. The visualization process involved two dimensionality
reduction techniques: Principal Component Analysis (PCA) and t-Distributed
Stochastic Neighbor Embedding (t-SNE). PCA captured the most important
information in the data, presenting it in a way that highlights similarities and
differences. t-SNE, on the other hand, focused on visualizing high-dimensional
data by creating a probability distribution that emphasized similarities and min-
imized the divergence between high and low-dimensional representations. While
t-SNE is better suited for non-linear data, it comes with a higher computational
complexity. Both PCA and t-SNE were employed to reduce the data into two
dimensions for visualization purposes, which is shown in Fig. 5.

3.2 Hyperparameter Tuning

Grid search, also known as parameter sweep, is a hyperparameter optimiza-
tion method performed by a thorough search across a manually chosen subset
of a learning algorithm’s hyperparameter space. An evaluation on a hold-out
validation set or cross-validation on the training set are two common ways to
measure performance metrics for grid search algorithms. Prior to conducting a
grid search, manually established boundaries and discretization may be required
since the parameter space of a classifier may comprise real-valued or unbounded
value spaces for some parameters.

To implement grid search for hyperparameter tuning, we need to determine
a subset of hyperparameter space as the grid search dictionary. Eventually, we
derived the optimal hyperparameters for BPNN, which is demonstrated in Fig. 1.
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Fig. 4. The figure displays the feature distributions for diabetes diagnosis in the dataset
before (top sub-figure) and after (bottom sub-figure) scaling using standardization.
Standardization has successfully transformed the features to a comparable magnitude,
resulting in a more uniform distribution, facilitating the training process and enhancing
the performance of the Back Propagated diabetes diagnosis model.

Fig. 5. The plot compares the distribution of positive and negative samples using two
methods, PCA (linear dimensionality reduction) and t-SNE (nonlinear dimensionality
reduction), providing a comprehensive visualization of their distribution in the dataset.
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Table 1. Chosen subset of hyperparameter space, and optimal hyperparameters for
BPNN, which are labeled in red.

Hyperparameter Value

Hidden Layer [16,8,4], [32,16,8], [64,32,16]
Activation Sigmoid, ReLU
Optimizer SGD, Adam
Mini Batch 8, 16, 32

3.3 Validation

Cross Validation. K-fold cross-validation is one of the most widely used
approaches for parameter tuning during training and performance evaluation
of a classifier. The dataset has been first split into two subsets, 80% for training
and 20% for testing purposes. During the training process, the training data is
randomly split into 5 folds, For each iteration, we use four of them for training
and one for validating, and these training data were used to train and tune the
hyperparameters of the BP neural network. Once the iteration is completed, the
model has already been fine-tuned and will be validated using the testing data.

Evaluation Metrics. Several evaluation metrics were used to test the per-
formance of the developed model. One of the most well-known indicators is
accuracy, which is defined as the percentage of all identifications that are actu-
ally correct. Moreover, to ensure the model is not biased towards a single class,
we also use sensitivity and specificity, which are the true positive rate and true
negative rate, respectively.

3.4 Results

We investigate the performance of the proposed BPNN on testing data and
achieved 89.81% for accuracy, 89.29% for sensitivity, and 90.38% for specificity.
We also compared our BPNN model with several machine learning methods.
Moreover, we also compared with some of the best performing related works,
including the Classwise k Nearest Neighbor (CkNN) from Christobel’s work
[6], the improved genetic algorithm and multi-layer perceptron (GA-MLP) from
Ahmad’s work [1], General regression neural network (GRNN) from Kayaer’s
work [10], Multi-Layer Feed Forward Neural Networks (MLFNN) from Kumar’s
work [21], and Generalized Discriminant Analysis combined Least Square Sup-
port Vector Machine (GDA-LS-SVM) from Polat’s work [18]. The results on
the Pima Indian diabetes dataset and other datasets are shown in Table 2. Our
proposed BPNN outperformed CkNN by 11.65%, GDA-LS-SVM by 10.65%, GA-
MLP by 9.41%, GRNN by 9.6%, and MLFNN by 8.03% in the Pima diabetes
dataset. The underperformance of the least performing models compared with
our model can be attributed to two main factors. Firstly, these models did not
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utilize data balancing and scaling techniques, resulting in an unbalanced train-
ing data that tends to favor the major class, thereby significantly impacting
their performance, as seen in GA-MLP, GRNN, and MLFNN. Secondly, tradi-
tional statistical machine learning methods, such as CkNN and GDA-LS-SVM,
lack the capability to extract deep abstract features, which hinders their perfor-
mance when compared to deep neural networks. Consequently, the deep neural
network serves as an effective encoder for feature extraction, contributing to the
classifier’s superior performance. It is obvious that the proposed method has
significantly improved the accuracy of diabetes diagnosis compared with other
machine learning methods.

Table 2. Comparative results on different datasets with various models. The cells with
‘-’ indicate that certain comparative studies did not assess their models on specific
datasets.

Method NIDDK Pima Indian Diabetes Dataset CDC BRFSS2015 Database BIT Mesra Diabetes Dataset
Test. Acc. Sensitivity Specificity Test. Acc. Sensitivity Specificity Test. Acc. Sensitivity Specificity

LDA 0.7222 0.6721 0.7872 0.7416 0.7767 0.7064 0.8868 0.9048 0.875
KNN 0.8148 0.7705 0.8723 0.7376 0.7952 0.6792 0.9151 0.9524 0.8906
Logistic Regression 0.6852 0.6230 0.7660 0.7418 0.7685 0.7148 0.8396 0.9286 0.7813
SVM 0.7130 0.6393 0.8085 0.7411 0.7906 0.6908 0.8491 0.8571 0.8438
Decision Trees 0.7037 0.6885 0.7234 0.7364 0.7622 0.7102 0.9057 0.9524 0.875
Random Forest 0.7222 0.7213 0.7234 0.7304 0.7673 0.6930 0.8774 0.9286 0.8438
Bagging 0.6944 0.6230 0.7872 0.7477 0.7983 0.6964 0.8868 0.9524 0.8438
XGBoost 0.7870 0.7377 0.8511 0.7505 0.7987 0.7017 0.9245 0.9524 0.9062
K-Means Clustering 0.6481 0.4590 0.8936 0.6653 0.5069 0.8259 0.7264 0.4762 0.8906
SOM 0.7130 0.6721 0.7660 0.6611 0.5118 0.8125 0.6698 0.5714 0.7344
ResNet-14 0.7963 0.7049 0.9149 0.7492 0.7790 0.7187 0.9245 0.9524 0.9063
ResNet-50 0.7870 0.7706 0.8085 0.7442 0.7722 0.7158 0.9151 0.9286 0.9062
CkNN 0.7816 0.6184 0.8738 — — — — — —
GDA-LS-SVM 3 0.7916 0.8333 0.8205 — — — — — —
GA-MLP 0.8040 — — — — — — — —
GRNN 0.8021 — — — — — — — —
MLFNN 0.8173 — — — — — — — —
BPNN + BatchNorm (Current) 0.8981 0.8929 0.9038 0.7549 0.7977 0.7112 0.9528 1.0 0.9219

4 Conclusion

In this study, we introduced an innovative diabetes diagnosis model that lever-
ages the Back Propagation Neural Network (BPNN) in synergy with batch nor-
malization. Our model presents a noteworthy advancement in enhancing the
accuracy of diabetes diagnosis across authentic datasets. The substantial per-
formance improvement demonstrated not only surpasses related models but also
potentially positions it as a benchmark, signifying its pivotal role in shaping
the landscape of diabetes diagnosis. Despite limited dataset size and features,
our method showed promising results across multiple datasets for diabetes diag-
nosis. Moving forward, our future work will involve refining and validating our
approach with more comprehensive datasets to enhance its robustness and gen-
eralizability. Additionally, we aim to improve our diagnostic approach through
data processing refinement and feature engineering.
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