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Abstract. The rapid growth of online video content has led to an
increasing demand for effective video categorization methods. Current
methods employed by video platforms include ratings from moderators,
creators, and viewers. However, such a self-rating categorization method
might not be the most efficient or insightful way to categorize videos.
If physiological signals were taken into account, that would make the
categorization more robust and could provide content creators, adver-
tisers, and researchers with a better understanding of the viewers’ emo-
tional responses and preferences. In this paper, we develop a hybrid MLP
architecture called “ATT-MLP” that utilizes self-attention in its layers
and then test its performance on the AVDOS (Affective Video Dataset
Online Study) dataset — a database where viewers’ physiological sig-
nals were measured whilst they watched pre-classified videos. ATT-MLP
outperformed MLP and traditional ML algorithms (Gaussian Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), Linear Ridge, and
Random Forrest) across all five data modalities (HRV, IMU, EMG-A,
EMG-C, and ALL) of the AVDOS dataset. Accuracy and F1 were used
as performance metrics, and the hybrid MLP architecture recorded the
highest accuracy and F1 score, 93.8% and 93.1%, when the EMG-A
data modality of the AVDOS dataset was used. This study shows that
the MLP employing self-attention mechanisms within its hidden layers
can be a powerful tool in the classification tasks of affective datasets.
The code for the aforementioned model is publicly available on Github:
https://github.com/IshtiaqgHoque/ATT-MLP.
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1 Introduction

Stimuli from external multimedia elicit a diverse affective experience in people,
driven by physiological signal changes. Moreover, watching a video can trigger
fluctuations in multimodal physiological responses, including Electroencephalo-
gram (EEG), Electrocardiogram (ECG), Heart Rate Variability (HRV) signals,
and Electromyography (EMG) [1]. Online video platforms and other stakehold-
ers, such as advertisers, are keen to explore the relationship between such physio-
logical changes in viewers and video content. The recognition of affective states in
viewers whilst watching videos is a popular branch of study in affective comput-
ing and has been achieved by the utilization of physiological features in various
computational models. Affective states refer to individual emotional experiences,
which can be classified into two main dimensions: valence and arousal. These
components collectively depict the manner in which individuals engage in the
processing and integration of their emotions within their conscious experiences
[2]. Another branch of study is video agent emotion recognition, where the emo-
tion of the agent or actor in the video is classified using audio and visual features
[1].

In this study, we conduct an affective video content analysis using the Affec-
tive Video Database Ounline Study (AVDOS) database [3,4]. Subsequently, we
develop a hybrid Multi-layer Perceptron MLP model utilizing self-attention [5]
in its hidden layer to classify the affective videos into three categories: positive,
negative, and neutral. We further compared our hybrid model with traditional
MLP and traditional machine learning algorithms like KNN to substantiate the
validity of our approach.

The primary contributions of this paper can be summarized in two key
aspects:

1. A novel hybrid MLP model with self-attention was developed for comprehen-
sive video categorization utilizing the AVDOS dataset;

2. Performed a comparative analysis between traditional MLP and standard
machine learning algorithms, confirming that our hybrid approach is more
effective and dependable.

This paper is organized as follows: Sect. 2 highlights the related studies based
on affective video categorization and the use of MLP in previous studies; Sect. 3
describes our proposed model, establishing the novelty of our work by incor-
porating MLP and a self-attention mechanism for video categorization; Sect. 4
presents the discussion of our results and a brief description of the AVDOS
dataset; Sect. 5 provides the conclusion and prospects of this study.

2 Related Work

Affective videos are used as stimuli in experiments to provoke certain emotions
in viewers. The classification of these affective videos can be done using audio
and visual features from the video itself [6]. For instance, Kang et al. used visual
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features to classify videos into three categories: fearful, sad, and happy, with an
accuracy of 79% [7]. With an accuracy of 74.69%, Wang et al. did an experi-
ment with 2,040 video clips and classified them into seven emotion categories [§].
Classification of affective videos using the viewer’s physiological signals is also an
option among researchers. Lin [3] used EEG signals to detect music video emo-
tion recognition. Soleymani et al. utilized physiological features like ECG, GSR,
EEG, and respiration amplitude to classify arousal and valence levels induced by
affective videos [9]. In other studies, such as the ones conducted by [1,10], affec-
tive video classification tasks were done by using multi-modal datasets utilizing
both video and physiological features [10].

In addition, the utilization of Multilayer Perceptron (MLP) in conjunction
with multimodal datasets has also been the subject of substantial research in pre-
vious studies. In a research conducted by Xing et al., six machine-learning algo-
rithms were employed for the purpose of emotion recognition. These algorithms
included Liblinear, REPTree, XGBoost, MultilayerPerceptron, RandomTree,
and RBFNetwork. The authors conducted a comparative analysis of these algo-
rithms in order to determine the optimal model for video emotion recognition
using a multi-modal dataset. The results showed that MLP achieved the best
performance where the classification accuracy for arousal was 97.79%, and the
classification accuracy for valence was 96.79%. Additionally, the authors noted
that Liblinear and REPTree had better performance in arousal recognition, while
MLP achieved a balanced classification result for both arousal and valence.
Regarding the dataset used in the research, it is worth noting that the exist-
ing EEG dataset is limited due to the complexity of EEG signal processing and
the relatively longer time required for EEG feature collection. Not only this, the
dataset used in the research had a limited variety of physiological signals [1].

3 Proposed Model

Our proposed model, ATT-MLP, is designed to capture complex patterns and
dependencies within multi-modal data. It consists of an integrated structure
combining a Multilayer Perceptron (MLP) and a self-attention layer. The self-
attention mechanism enhances the MLP architecture to promote the sequential
and variable data handling capacity of the architecture compared to the MLP
and ML models. As the AVDOS dataset includes diverse and interconnected
multi-modal information regarding physiological signals, using our hybrid app-
roach becomes particularly useful in predicting the video category.

The different physiological signals do not have fixed lengths. The model essen-
tially takes the input and passes it to the hidden layers. After the MLP hidden
layers, the output is further enhanced by a hybrid hidden layer, which incorpo-
rates an MLP hidden layer and a self-attention layer. Figure 1 clearly illustrates
the workflow of our proposed model. This combination makes use of the MLP’s
feature extraction skills and self-attention context awareness. As a result, the
output exhibits a fused representation that includes both learned features and
contextual data.
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Fig. 1. Modified MLP Architecture (ATT-MLP)

3.1 Multilayer Perceptron (MLP)

Multilayer perceptron (MLP) is a feed-forward neural network [11]. It consists
of an input layer, hidden layers, and an output layer. The presence of multiple
layers distinguishes MLP from a linear perceptron. Video classification through
recording multi-channel physiological responses is a complex nonlinear system
[12]. Compared with other traditional machine learning approaches such as SVM,
KNNs, and Decision Trees, the MLP model has a greater nonlinear mapping
ability. [13].

Our model features an input layer whose dimensions vary based on the num-
ber of input features, ensuring that it can effectively process data from different
sources. This is followed by an MLP consisting of one to three hidden layers.
The number of hidden layers and their respective sizes are adjustable to capture
complex patterns in the data. Specifically, the hidden layer sizes range from 32
to 256 neurons, offering a balance between model expressiveness and computa-
tional efficiency. Two activation functions have been employed, ReLU (Rectified
Linear Unit) and Tanh (Hyperbolic Tangent), to introduce non-linearity into the
model. L2 regularization, which varies between 1le™® to le~! on a logarithmic
scale, is applied to the weights of the hidden layers, promoting generalization
and preventing over-fitting. Lastly, the Output Layer consists of a Dense layer
with a ‘softmax’ activation function. The number of units in the Output Layer
matches the number of classes, which are the three outputs (Positive, Neutral,
Negative).
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3.2 Self-Attention Mechanism

The self-attention mechanism employs the scaled dot-product attention app-
roach as shown in Fig.2b. This allows the model to assign importance scores
to different parts of the input sequence, capturing dependencies and relation-
ships between elements. As illustrated in Fig. 2a, the output of the last hidden
layer is concatenated with the output of the self-attention layer, resulting in a
hybrid hidden layer that encompasses both the acquired features and contextual
insights.

The hybrid layer consists of a hidden layer with an activation function given
by Eq.2. The output vector of the hidden layer, hs, is passed into the self-
attention layer and undergoes linear transformation to become vector hsz, using
a weight matrix w,,. Subsequently, using scaled dot-product attention, query
(¢), key (k), and value (v) vectors are calculated, as shown by Egs. 4, 5 and 6,
respectively. wgq, wy, and w, are weight matrices and by, by, and b, are bias vectors.
The sizes of the ¢, k and v vectors are determined by the choice of attention
units (16, 32 or 64). Following the ¢, k, and v calculation, the attention vector «
is calculated using a ‘softmax’ function. As indicated by Eq. 7, the query vector
and transpose of the key vector are multiplied and scaled between 0 and 1 to
calculate the value of a. Afterwards, the h} vector is calculated by multiplying
the attention vector (o) with the value vector as shown in Eq. 8. The vector hj is
the output of the self-attention mechanism embedded within a particular hidden
layer. Lastly, h% is concatenated with the output vector of the hidden layer 3 as
shown in Fig.2a and described by Eq.9. The concatenated output is the final
contextualized vector that is passed into the output layer.

ho = Output of hidden layer 2

a= Zwkth +5b (1)

hs = y(a) (2)

hsa = hawy, + by ®3)
q = hzqwg + by (4)

k = haqwy, + by (5)

v = hzawy, + b, (6)
a= softmax(q*kT) (7)

Vi
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Fig. 2. (a) Hybrid Hidden Layer and (b) The Scaled Dot Product Self Attention Mech-
anism Applied To The Last Layer.

hi = av (8)
hy = concat(hs’, hs) (9)

3.3 Further Enhancements

In order to enhance the performance and generalization capability of the model,
the process of hyperparameter tuning is carried out utilizing Optuna, a robust
framework for hyperparameter optimization. The hyperparameters that require
adjustment include the number of hidden layers, the dimensions of each hidden
layer, the selection of activation function, the strength of L2 regularisation, and
the number of attention units. The Optuna framework utilizes an exhaustive
search strategy to determine the optimal combination of hyperparameters that
maximizes a preset goal function. This process guarantees that the model is
adjusted to optimize its performance for the particular job and AVDOS-VR
dataset. The hyperparameters and the subsequent search space used for ATT-
MLP can be found in Table 1.
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Table 1. Hyperparameter Search Space for Optimization
Classifier Optimization | Hyperparameter | Search Space
Framework
ATT-MLP Optuna hidden layer size |32, 64, 128
activation relu, tanh
function
alpha le—5, le—4, 1le—3, le—2
attention units 16, 32, 64
MLP GridSearch optimizer 0.05, 0.001
learning rate
hidden layer (100,), (50, 50,)
sizes
model dropout 0, 0.5
Linear Ridge GridSearch alpha 107 to 10°
Gaussian SVM GridSearch C 1, 10, 100, 1000
gamma 0.1, 0.01, 0.001
Random Forrest GridSearch n estimators 10, 50, 100
max depth 5, 10, 20
K-Nearest Neighbour | GridSearch no of neighbours |1, 5, 11, 15

4 Experiment

Table 2. AVDOS Dataset: Data Modality by Number of Features

Data Modality | Number of Features
HRV 42

IMU 108

EMG-A 84

EMG-C 84

All 318

4.1 Dataset

The dataset gathered from an open-source GitHub repository is part of a wider
study titled AVDOS — Affective Video Database Online Study conducted by
researchers from Bournemouth University, Aegean University, and Emteq Labs
[3]. In this dataset, 37 participants’ physiological signals were measured when
they watched videos of three categories: positive, neutral, and negative. The
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physiological signals were further divided into five different modalities: HRV
(heart rate variability), IMU (inertial measurement unit), EMG-A (electromyog-
raphy amplitude), EMG-C (electromyography contact), and ALL (all the physio-
logical signals) (Table 2). In this study, LOSO-cross validation was used wherein,
for each classifier, one participant was made to be the test dataset, whereas the
other thirty-six participants were used to train the model. This process was
repeated for each participant, ensuring each participant was the test data at
least once, and then the average accuracy and F1 score were calculated.

4.2 Results

Table 3. Different Classifier’s Performance by Data Modality. Best performance is
highlighted in boldface font.

Classifier Data Modality

HRV IMU EMG-A EMG-C All

ACC |F1 ACC |F1 ACC |F1 ACC |F1 ACC |F1
MLP 0.389 |0.362 |0.506 |0.482 |0.752 | 0.733 |0.439 |0.408 |0.754 |0.736
Gaussian SVM 0.373 |0.328 |0.523 | 0.497 |0.793 | 0.786 |0.454 0.402 |0.769 |0.752
KNN 0.379 |0.358 |0.412 | 0.391 |0.746 | 0.727 |0.419 0.395 |0.640 |0.626
Linear Ridge 0.396 |0.344 |0.502 | 0.471 |0.798 |0.792 |0.441 0.387 |0.764 |0.750
RF 0.353 |0.326 |0.443 |0.405 |0.788 |0.780 |0.427 0.384 |0.780 |0.771
ATT-MLP (Ours) |0.757|0.736 | 0.853|0.736 | 0.938|0.931 |0.849 |0.832|0.933 0.927

In this study, ATT-MLP reported the highest accuracy and F1 score compared
to the rest of the five classifiers (MLP, Gaussian SVM, KNN, Linear Ridge,
Random Forrest) across all five modalities (HRV, IMU, EMG-A, EMG-C, and
All) as shown in Table 3. The hyperparameters and the subsequent search space
for the six classifiers are reported in Table 1. Accuracy and F1 scores were the
primary performance parameters used to distinguish the performance of the
different classifiers. Accuracy and F1 scores were calculated according to the
following expressions, respectively.

ACC — Number of Correct Predictions
"~ Total Number of Predictions

Bl — 2 x (Precision x Recall)

(10)

(11)

Meanwhile, Gaussian SVM was the second best-performing classifier as it
reported performance metrics higher than other classifiers, excluding ATT-MLP,
in three data modalities (IMU, EMG-A and ALL). KNN seems to be the worst-
performing classifier as it reported the lowest score in three data modalities
(IMU, EMG-A, and ALL). Contrary to expectations, the highest accuracy and
F1 score reported by any classifier came from EMG-A data modality than ALL

Precision + Recall
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data modality. ATT-MLP scored 0.938 in accuracy and 0.931 in F1 score when it
came to classifying EMG-A data, whilst for ALL data, it scored 0.933 and 0.927,
respectively. In fact, all six classifiers performed better when EMG-A data was
used compared to ALL data, though the difference was quite minute. This might
indicate that EMG-A has the most weight in terms of classifying emotional state
compared to all other physiological signals though further data analysis is needed
before this claim can be verified. The lowest accuracy and F1 score were reported
by the Random Forrest classifier at 0.353 and 0.326, respectively for HRV data
modality. The accuracy and F1 score variations across different modalities are
illustrated by Table 3.

5 Conclusion

Video is currently the most popular multimedia stimulus capable of conveying
complex emotional meanings through visual and aural cues [1]. As such, the auto-
matic classification of videos by using features from the video and the viewer is
a growing field of study in affective research. In this study, we presented a novel
hybrid MLP architecture called ATT-MLP that utilizes self-attention mecha-
nisms in its layers and then tested its performance on the AVDOS dataset. The
study showed the effectiveness of this model in classifying the videos based on
the viewer’s physiological signals, outperforming several popular ML algorithms
and MLP without any self-attention mechanism it’s hidden layers. One of the
key limitations of the proposed model is that it has been specifically designed
for the AVDOS dataset; thus, the future of this research consists of testing the
developed model with other affective datasets with physiological features.
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