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Abstract—Cancer is an extremely heterogeneous disease, and
this property becomes increasingly exacerbated as the disease
progresses. Its heterogeneity can be reflected by protein signature,
called its proteome, which is essentially a dataset indicating
which proteins are highly expressed or lowly expressed in a
tumour. Whilst no two cancer proteomes are the same, various
patterns in the proteome can help distinguish certain cancers
from others. There are prominent proteomic patterns that a
Machine Learning (ML) technique can pick from different cancer
types. However, identifying severity patterns across cancer types
is challenging due to major proteomic differences interfering with
ML performance. Accordingly, proteomic analyses are rarely
performed on datasets consisting of multiple cancer types unless
aiming to distinguish between two types. In this study, we tested
three ML algorithms in classifying the TCGA (The Cancer
Genome Atlas) PanCancer dataset, consisting of 32 different
cancer types, into various clinically relevant metrics, such as
stage, grade, and treatment response of tumour. On average, we
achieved the best accuracies when employing a Support Vector
Machine (SVM) classifier with a Radial Basis Function (RBF).
The highest accuracies were accomplished when classifying based
on pathological stage, suggesting a possible future application as a
diagnostic tool, where cancers can be staged based on a quick ML
classification rather than a lengthy evaluation by a pathologist.

Index Terms—Cancer, Proteomics, PanCancer Datasets, Ma-
chine Learning, Classification

I. INTRODUCTION

Cancer is an extremely heterogeneous disease, differing dra-

matically among different types/grades and individual patients

[1]. This stubborn nature of cancer is especially pronounced in

its advanced forms, while early cancer is highly treatable, with

a wide range of different therapeutics for different cancers [2].

In general, cancer is classified into four stages and four grades:

stage indicates severity, with stage 4 being most severe; grade

determines tumour histology and differentiation of cancerous

cells from their surrounding cells [3]. Hence, it is crucial to

determine the exact stage or grade of a particular cancer with

early diagnoses and screenings so that doctors can concentrate

their efforts on either curative or palliative treatments.

Currently, numerous biomedical tools or markers are being

used for cancer diagnosis and tumour staging [4]. Laboratory

tests such as tissue biopsies, blood tests, or imaging-based

tests (CT/MRI scans) help practitioners in clinical staging

and grading but are costly and time-consuming, requiring

lengthy professional examinations by trained pathologists [4].

Ultimately, a method to provide faster feedback would signif-

icantly contribute to both patients’ well-being and a relief for

the burden on the existing health systems.

Machine learning (ML) models can serve as a powerful

tool to identify common patterns among different cancers.

Several studies have applied ML algorithms to numerical

datasets of classical clinical features, such as the size and

spread of a specific tumour [5]. Whilst ML models have

been applied for single cancer types, they have often been

neglected on the relatively more complex task of identifying

patterns in proteomic datasets containing multiple cancer types

altogether [5]. Complexity arises due to the extreme variations

among different cancer types, which often interferes with the

model’s accuracy [6]. For example, a high variation of estrogen

receptor expression between a stage 4 breast cancer and a stage

1 lung cancer can easily be mistaken as a vital feature in an

ML model classifying cancers based on severity.

An accurate classifier for multiple cancers could identify

common severity markers of several cancers; these markers

can then be characterised as potential therapeutic targets for

multiple cancers. Way et al. [7] utilised TCGA (The Cancer

Genome Atlas) PanCancer dataset of a few cancers to detect

anomalies in a specific gene responsible for mutation in cell

growth and proliferation. As a result of using PanCancer data,

their model can be applied to any tumour. This proves the

potential of using the TCGA PanCancer dataset of multiple

cancers altogether to provide generalised insights into any

cancer type. To the best of our knowledge, no studies have

been performed on the PanCancer dataset to categorise it

into a metric as broad as pathological staging or grading.

In this study, we aim to use three ML classifiers on the

TCGA PanCancer dataset to classify cancer grades and sever-

ity irrespective of cancer types. Identifying common proteins

and traits between cancers would advance numerous treatment

options and open up the possibility of global cancer treatments

rather than chemotherapy and invasive surgeries.
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II. METHODS

A. Dataset Information

We used the TCGA clinical data resources [8] and the

TCGA PanCancer proteomic dataset [9], which contains pro-

tein expression data of 32 different cancer types. A unique ID

is provided for each participant, allowing to correlate clinical

metadata to the proteomic data. Clinical metadata included

data on various clinical metrics for 11,161 cancer patients.

The TCGA proteomic data included 259 proteins commonly

modulated in cancer from 7695 patients.

B. Data Filtering

Patient IDs found in either one dataset or the other, not in

both, were excluded, which resulted in 7,632 samples with

both proteomic and clinical annotations. However, proteomic

profiles of certain proteins were not elucidated in particular

cancers, where a “NaN” value was located. All proteins that

contained “NaN” values in any sample were excluded. This

resulted in the exclusion of 50 proteins, resulting in 209

proteins being left for analysis. The clinical dataset did not

always have available data for all patients for all evaluated

clinical metrics. Hence, samples were excluded where data was

unavailable, not applicable, unknown, or had a discrepancy for

the particular clinical metric.

Finally, the data were divided into different classes depend-

ing on the metric. For pathological staging prediction, data

were grouped into four classes (S1/S2/S3/S4), where sub-

stages were merged into corresponding stages; for example,

stages 2A, 2B, and 2C were merged under stage 2. For

histological grade prediction, data were again grouped into

four classes (G1/2/3/4). For treatment outcome prediction, data

were grouped into two classes (responsive or not responsive).

The cancer was responsive if the tumour was partially (partial

remission) or completely removed (complete remission) fol-

lowing treatment. The cancer was unresponsive if the cancer

had grown further despite treatment (progressive disease) or

remained the same size despite treatment (stable disease). Due

to class imbalances, as there were approximately four times

as many responsive cancers as unresponsive, the responsive

category was undersampled to 25% of its original size.

C. ML Algorithms

Three different ML algorithms were considered in this

study: SVM, RF (Random Forest), and MLP. Using Grid-

SearchCV tuning algorithm from scikit-learn python pack-

age, several hyperparameters were optimised: “C”, “gamma”,

and “kernel” for SVM; “n estimators”, “max features”,

“max depth”, and “criterion” for RF; “hidden layer sizes”,

“activation”, “solver”, “alpha”, and “learning rate” for MLP.

The number of hidden layers was fixed at 1. The three

algorithms were applied individually to the complete dataset.

The training and test sets were split into a 70/30 ratio for

all algorithms. Where necessary, due to class imbalances—

where the sample size of one class was notably larger than

another—the class with the higher number of samples was

undersampled. Undersampling involved taking a random per-

centage of the class with higher sample numbers to balance the

sample numbers between classes. We conducted 5-fold cross-

validation for all ML models. To evaluate the ML models,

we used accuracy score and confusion matrices to attain

information regarding incorrectly classified classes.

III. RESULTS AND DISCUSSION

A. Classifying Cancers—Pathological Stage

First, classification between S1 and S4 yielded a relatively

high accuracy of 80.16% (Fig. 1a) by the MLP classifier,

suggesting that the proteomics data of a cancer potentially

reflects its pathological stage.

Fig. 1. Accuracies of ML algorithms in categorizing cancers.

Given the promising results, we next categorised all cancers

into four stages. Here, the performance was relatively low

across all algorithms, with RF achieving the highest accuracy

of approximately 50.83% (Fig. 1b).

To test the theory that perhaps there are strong proteomic

similarities between the more severe stages (S3 and S4) and

the same between the less severe stages (S1 and S2), we split

the dataset for a 2-class classification of S1 and S2 combined

in one class and S3 and S4 in another. This initially gave

relatively poor results, as performance ranged from 60-70%

accuracy in all three algorithms (Fig. 1c). As S1/2 had far

greater samples than S3/4, S1/2 were undersampled: one-

third of the original samples in class S1/2 were randomly
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selected to correct for the class imbalances. The algorithms

were run again, yielding accuracies of 80.96%, with the

best performance achieved by SVM (Fig. 1d). Such high

classification performance indicates that proteomic signatures

between adjacent stages (S3 and S4, or S1 and S2) may not

differ significantly, but they differ significantly between early

and severe stages. Further validation of this finding would have

notable implications for cancer diagnostics. This would enable

us to categorise and stage a cancer as either S1/2 or S3/4,

significantly improving diagnosis efficiency by avoiding time-

consuming pathologist reports.

B. Classifying Cancers—Treatment Outcome

Despite normalisation of cancer staging and grading, these

classification metrics are prone to subjectivity as human errors

can occur in pathology and histology reports. We, therefore,

applied ML on a more objective metric—cancer’s responsive-

ness to the first course of treatment.

We found no significant improvements in the algorithm

performance despite using the more objective classification

metric. Instead, performance decreased to 66.72%, with the

best accuracy achieved by the SVM classifier with an RBF

(Radial Basis Function) kernel (Fig. 1e). This suggests that

there are few proteomic differences between responsive and

unresponsive cancers. However, several other confounding

factors exist, most glaring of which are the lack of information

on a patient’s exact treatment. The nature of treatment type

and course undoubtedly affects treatment outcome but is not

reported in the dataset. Furthermore, the mixing of both more

severe cancers and less severe cancers may further affect

model performance. However, each of these factors is not

without remedy—with further cleaning of the dataset, a better

performing model could be achieved.

C. Classifying Cancers—Histological Grade

Additionally, we classified cancers based on histological

grades. Due to large class imbalances, we merged Grade 1 and

2 (G1 and G2) in one class and Grade 3 and 4 (G3 and G4) into

another. Classification performance increased compared to the

4-stage classification but decreased compared to the 2-stage

(S1/2 and S3/4) classification. Here, the SVM classifier with

an RBF kernel achieved the highest classification of 71.06%

(Fig. 1f). Such findings suggest that proteomic data are not

necessarily a strong determining factor for the histological

grade. Instead, the histological grade may be governed by

external factors such as the shear force on the tumour and the

tumour micro-environment. Further study should affirm this

finding but would be an exciting avenue for future exploration.

IV. CONCLUSION AND FUTURE WORK

Given the relative difficulty of categorising a proteomic Pan-

Cancer dataset because of its variation (heterogeneity) among

cancer types, this study evaluated whether ML algorithms can

distinguish common severity patterns. It holds notable implica-

tions in cancer diagnosis: a potential future where pathologists

and clinicians can have an ML-based tool for diagnosing and

predicting any cancer types and its severity levels. We found

prominent proteomic differences between pathological stages

encompassing all cancer types, reflecting potentially there

could be common drug targets for many different cancers. If

verified, this could greatly simplify drug discovery—instead

of looking for multiple drugs to target multiple cancers, we

can focus on a single drug capable of targeting multiple

different cancer types. Further polishing the ML training and

data pre-cleaning/analysis could eventually make the model

an effective tool for predicting treatment outcomes, which

easily holds massive potential in helping clinicians to find the

best possible treatment for a patient. Feature selection was

not performed in this study but is undoubtedly an immediate

future direction that could be implemented, potentially further

raising ML performance and identifying common proteomic

pathways present in multiple cancer types.
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