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Abstract—COVID-19 brings devastating impacts on society
and shows how fragile our current healthcare system is. To
aid the healthcare system, machine learning (ML) models have
shown strong potential in combating COVID-19 across several
areas, including diagnosis, complication prediction, mortality
risk prediction, and severity assessment. Feature selection is an
essential step in developing efficient machine-learning models.
In this research, we screened 143 COVID-19 research articles,
where 26 articles had enough data to calculate the effect size. We
used Cohen’s d to calculate the effect size of the features, which
reveals several highly significant features yet explored in only
a few studies and several less significant features yet explored
in many studies. Lymphocyte (%) and hypersensitive c-reactive
protein are comparatively less used features but showed a very
large effect size. On the other hand, lymphocyte count, c-reactive
protein, D-dimer, and creatinine are utilized in several studies
but are not necessarily significant. Considering these high-effect-
sized features and discarding the low-effect-sized features would
benefit future ML model developments for combating COVID-19.

Index Terms—Effect size, Cohen’s d, COVID-19, Prognostica-
tion, Meta-analysis

I. INTRODUCTION

In December 2019, the novel coronavirus disease (COVID-
19) was discovered in Wuhan, China [1]. Since then, it has
quickly spread throughout the entire globe. The World Health
Organisation (WHO) classified this outbreak as a pandemic
in January 2020 [2]. The extremely contagious viral illness,
COVID-19, has so far spread rapidly across the world and
has raised major issues about global health. Globally, 6.89
million deaths and 761.4 million confirmed cases of COVID-
19 have been reported as of March 31, 2023, [3]. The fast

spread of COVID-19 has left front-line healthcare profession-
als exhausted and in serious need of medical supplies.

Many COVID-19 patients experience fast symptom esca-
lation following a period of relatively moderate symptoms,
underscoring the need for sophisticated risk classification
models. Predictive modeling can identify individuals who have
a higher mortality risk and help reduce deaths as quickly as
possible. Therefore, it is essential to accurately estimate the
disease prognosis and triage critically sick patients in order to
lessen the load on the healthcare system and offer the best care
for patients. Additionally, physicians and health policymakers
frequently employed and relied on predictions provided by
various computational and statistical models because of the
significant hesitancy surrounding its concluding influence.

Feature selection is a crucial part of developing any pre-
dictive model as it heavily affects the performance of such
models. It refers to selecting a subset of relevant features
to train predictive models, such as machine learning (ML).
By removing unnecessary data, feature selection provides a
straightforward yet efficient solution to the problem of find-
ing appropriate features for a particular real-life application
[4]. Removal of irrelevant data helps increase accuracy and
decrease computation time, with a better comprehension of
the learning model or data. Mostly, not all the variables in the
dataset are relevant when creating a real-world ML model. The
addition of redundant variables reduces the model’s capacity
for generalization and may also reduce a classifier’s overall
precision. A model also becomes more complex if additional
unnecessary variables are added to it.

Effect size is one of the feature selection methods. While
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statistical significance demonstrates the existence of an effect
in a study, practical significance demonstrates that the effect
is significant enough to have real-world implications [5]. P
values are used to indicate statistical significance, whereas sta-
tistical effect sizes are used to indicate practical significance.
Statistical significance is impacted by the sample size, and so
it alone might be deceptive. No matter how small the effect
is in reality, increasing the sample size always increases the
chance of finding a statistically significant effect. Contrarily,
effect sizes are unaffected by the number of samples [6].
Sullivan and Feinn [6] argued that the p value is not enough
and emphasized reporting the effect size in the abstract and
results of papers. Through a systematic literature review, Ge et
al. [7] used effect size to evaluate features used in diagnosing
Parkinson’s disease.

Researchers have reported many studies on COVID-19 on
several targets, for example, diagnosis [8], [9], complication
prediction [10], mortality risk prediction [11], and severity
assessment [12]. A literature review article helps us know
about the summary trends of a certain research domain.
Several literature review articles are published for COVID-
19 domains; for example, Lalmuanawma et al. [13] reviewed
ML models, data types, performance, etc. reported by various
COVID-19 studies. Abd-Alrazaq et al. [14] reported the most
prominent research hotspots, publication frequency, origin,
article types, and top authors. They mentioned 733 systematic
literature review articles on COVID-19.

Most literature reviews lack further analysis to find out
which features or models are actually better, given that differ-
ent authors had different choices, using which they reported
different performances. Yaacob et al. [15] used effect size
on the performance of ML models in predicting COVID-19
confirmed cases. However, ML has been used not only in
predicting confirmed cases but also in other aspects, such
as severity assessment and mortality risk prediction. In this
article, we, therefore, present the calculated effect size of
features used in ML-based COVID-19 studies in four aspects.

II. METHOD

A. Data Curation

Based on our primary target, we set the search keywords as
covid*, artificial intelligence, machine learning, and prognos*
(* refers to any keywords that start with the preceding word
fragment). We searched five well-known databases on 19
November 2021: Google Scholar, Web of Science, PubMed,
Scopus, and MEDLINE. The search revealed 2,403 articles,
where 737 articles were removed being duplicates. Further,
217 articles were discarded because of irrelevant titles that
do not match our scope. In the remaining 1,449 articles, we
applied our inclusion/exclusion criteria.

We included an article if it: (1) specifically addressed
COVID-19, (2) applied artificial intelligence or ML algorithm
on COVID-19 datasets, (3) was peer-reviewed, (4) was pub-
lished in English, (5) was published after 2017, and (6) was not
a case-study or review article. The above criteria made 1,306

articles excluded. We inspected the remaining 143 articles to
calculate the effect size.

Among the 143 articles, only 26 articles have mentioned
required data on features, using which we calculate the ef-
fect size. The selected articles are broken down into four
categories: diagnosis, complication prediction, mortality risk
prediction, and severity assessment (Table I). Among the prog-
nostication categories, diagnosis refers to COVID-19 diagnosis
using chest x-ray images [8], omics data [9], etc. Studies
were categorized as ‘complication prediction’ if they used ML
in predicting the course or complications of COVID in the
future (i.e. if a patient ends up in ICU or develops long-term
respiratory symptoms) [10]. This is in contrast to ‘severity
assessment’, which is based on stratifying how bad the disease
currently is (present) [12].

TABLE I
DISTRIBUTION OF ARTICLES INTO FOUR CATEGORIES

Category Screened articles (%) Articles having required data (%)

Diagnosis 23 (16.1%) 3 (11.5%)
Complication prediction 46 (32.2%) 11 (42.3%)
Mortality risk prediction 35 (24.5%) 5 (19.2%)
Severity assessment 39 (27.3%) 7 (26.9%)

B. Effect Size

Effect size is a statistical concept that uses a quantitative
scale to quantify how strongly two variables are related. If
two data have comparable qualities and one of them has a
higher average than the other, the difference between them is
referred to as the effect size. The effect size increases when the
difference gets bigger. We can determine whether a difference
is real or the result of a change in factors by looking at the
statistical effect size.

There are different ways to calculate the effect size, such
as standardized mean difference, Cohen’s d, Glass’ ∆, and
Hedges’ g. Among these, Cohen’s d is the most acclaimed
[5], and so used in this study.

To calculate Cohen’s d, a pooled standard deviation (s)
defined by Jacob Cohen is calculated at first, shown in (1).

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(1)

where, n1 and n2 are the sample sizes, and s1 and s2 are the
standard deviations of the two variables.

Cohen’s d is then the difference between two means divided
by the pooled standard deviation shown in (2).

d =
x1 − x2

s
(2)

Effect size is classified into different categories based on
the magnitude of d: very small (0.01), small (0.20), medium
(0.50), large (0.80), very large (1.20), and huge (2.00) [16],
[17].

We calculated the effect size of all features in all 26 articles
separately. As we calculated it independently based on the data
in respective articles, the variations of effect size might skew



the arithmetic mean, and so we considered the median, instead
of the mean, to compare the effect sizes among different
features.

III. RESULTS AND DISCUSSION

A. Frequency of Features

We extracted data on 142 features from 26 COVID-19
studies. Among these, only 24 features are used in at least
four studies and are listed in Table II. The most frequently
used feature is the age of the participants, which appears in
84.6% of studies. The second most used feature is lymphocyte
count, which appears in 50% of the studies.

TABLE II
FREQUENCY OF FEATURES USED IN 26 STUDIES

Feature name Number of studies (%)

Age 22 (84.6%)
Lymphocyte count 13 (50%)
White blood cell count 12 (46.2%)
Lactate dehydrogenase 11 (42.3%)
C-reactive protein 10 (38.5%)
Neutrophil 8 (30.8%)
D-dimer 8 (30.8%)
Lymphocyte (%) 7 (26.9%)
Platelet count 7 (26.9%)
Temperature (c) 7 (26.9%)
Creatinine 6 (23.1%)
Neutrophils (%) 5 (19.2%)
Oxygen saturation 5 (19.2%)
Body mass index 5 (19.2%)
Creatine kinase 5 (19.2%)
Aspartate aminotransferase 4 (15.4%)
Monocyte (%) 4 (15.4%)
Respiratory rate 4 (15.4%)
Ground glass opacity 4 (15.4%)
Diastolic blood pressure 4 (15.4%)
Systolic blood pressure 4 (15.4%)
Eosinophils (%) 4 (15.4%)
Hemoglobin 4 (15.4%)
Consolidation 4 (15.4%)

B. Top Features in Diagnosis

Fig. 1 displays huge and very large effect-sized features in
COVID-19 diagnosis studies. Age and lymphocyte (%) have
the highest effect size of 1.33, followed by lymphocyte count
and neutrophils (%).

C. Top Features in Complication Prediction

Fig. 2 presents huge and very large effect-sized features in
the complication prediction category. Oxygen saturation, red
blood cell, and hematocrit have huge effect sizes, even though
only one research in the complication prediction category
employed these features. Lymphocyte (%) has a very large
effect size, and five studies in this area exploited this feature.
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Fig. 1. Huge and very large effect-sized features in COVID-19 diagnosis
articles. Acronyms: PTA – Prothrombin time activity; PT – Prothrombin
time; N/L – Neutrophil to lymphocyte ratio; APTT – Activation of partial
thromboplastin time.
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Fig. 2. Huge and very large effect-sized features in COVID-19 complication
prediction articles. Acronyms: RBC – Red blood cell; TS of CT – Total score
of computed tomography; N/L – Neutrophil to lymphocyte ratio; CT of UOR
– Computed tomography scan of Upper lobe of the right lung; Hc-reactive
protein – Hypersensitive c-reactive protein.

D. Top Features in Mortality Risk Prediction

Huge and very large effect-sized features in mortality stud-
ies are presented in Fig. 3. Although lymphocyte (%) is used
in one paper, it has the largest effect size in this category.
However, age also has a large effect size and was used in six
articles.

E. Top Features in Severity Assessment

Fig. 4 presents huge and very large effect-sized features in
severity assessment studies. The highest effect-sized feature,
with around 1.46 and used in two research, is temperature.
Apart from temperature and age, other features have only been
observed in one severity assessment study.

F. Overall Top Features

The top 10 features out of 142 features in terms of effect size
are shown in Fig. 5. Although they lie in the very large effect
size category, the majority of them are found in just one study.
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Fig. 3. Huge and very large effect-sized features in COVID-19 mortality
risk prediction articles. Acronyms: OSMDE – Oxygen saturation minimum
during the encounter; MRALES – Maximum radiographic assessment of
lung edema score; Hc-reactive protein – Hypersensitive c-reactive protein;
RALES – Radiographic assessment of lung edema score change; MAI Score
– Maximum artificial intelligence score; WBC count – White blood cell count.
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Fig. 4. Huge and very large effect-sized features in COVID-19 severity
assessment articles. Acronyms: SOFA – Sequential organ failure assessment;
Visual CT of LPA – Visual computed tomography score of lung parenchymal
abnormalities; TEPAAM – Total extent of parenchymal abnormalities by
automatic measurement; CHF – Congestive heart failure; COPD – Chronic
obstructive pulmonary disease; CA – Cardiac arrhythmias; DC – Diabetes
with complications.

For example, ‘Oxygen saturation minimum during encounter’
has the highest effect size among all the 142 features, but it is
used in only one study. On the other hand, age was not even
among the top 10 features, but it is the most used feature.
Lymphocyte (%) is used in seven studies with an effect size
= 1.45.

Several features – for example, lymphocyte count, c-reactive
protein, D-dimer, and creatinine – are used in many studies but
are not effective based on their effect size. Yet again, features
that have a large effect size but have only appeared in one
or two studies are less reliable since they could be biased.
We, therefore, present the features that are used in three or
more separate studies (reliable) and have a high effect size
(effective) in Table III.

In the data preprocessing stage, before developing ML
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Fig. 5. Top 10 features in terms of effect size in all COVID-19 arti-
cles. Acronyms: OSMDE – Oxygen saturation minimum during encounter;
MRALES – Maximum radiographic assessment of lung edema score; Hc-
reactive protein – Hypersensitive c-reactive protein; RBC – Red blood cell;
TS of CT – Total score of computed tomography; SOFA – Sequential organ
failure assessment; Visual CT of LPA – Visual computed tomography score
of lung parenchymal abnormalities.

TABLE III
RELIABLE AND EFFECTIVE FEATURES

Feature Name Effect size Number of studies

Age 1.018 22
Lymphocyte (%) 1.447 7
Neutrophils (%) 1.197 5
Aspartate aminotransferase 0.864 4
Monocyte (%) 0.844 4
Hc-reactive protein 1.510 3
Arterial oxygen partial pressure (PaO2 in
mmHg) to fractional inspired oxygen ratio

1.149 3

Neutrophil to lymphocyte ratio 1.060 3

models, future research should consider selecting these reli-
able and statistically effective features. It would enhance the
performance of ML models in terms of accuracy and speed.

IV. CONCLUSION

The traditional way of combating COVID-19 is resource
intensive. In order to reduce medical resources and efficiently
use them, ML models can be a prospective solution. While de-
veloping a model to combat COVID-19, appropriate feature se-
lection is important because there are many features to choose
from. We systematically curated 143 articles and calculated
the effect size (Cohen’s d) of all reported features. Analysis
revealed several effective features but seldomly used (e.g.,
lymphocyte (%) and hypersensitive c-reactive protein), and
several less effective features but highly used (e.g., lymphocyte
count, c-reactive protein, D-dimer, and creatinine). In addition
to Cohen’s d, we will include AI techniques in the future,
for example, multilayer perceptron and convolutional neural
network models for variable selection, feature importance, and
significance analysis [18]. They provide useful information
to identify features or variables that have the most impact
on predicting a particular outcome. Additionally, we plan to
expand our meta-analysis to include more recent studies and
a larger number of articles to increase the robustness of our



findings. The reliable and effective features reported in this
article would help future research to select features, which
would improve the model performance, helping humanity
combat COVID-19.
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