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Abstract 

Background:  With the global spread of COVID-19, the world has seen many patients, 
including many severe cases. The rapid development of machine learning (ML) has 
made significant disease diagnosis and prediction achievements. Current studies 
have confirmed that omics data at the host level can reflect the development process 
and prognosis of the disease. Since early diagnosis and effective treatment of severe 
COVID-19 patients remains challenging, this research aims to use omics data in differ-
ent ML models for COVID-19 diagnosis and prognosis. We used several ML models on 
omics data of a large number of individuals to first predict whether patients are COVID-
19 positive or negative, followed by the severity of the disease.

Results:  On the COVID-19 diagnosis task, we got the best AUC of 0.99 with our mul-
tilayer perceptron model and the highest F1-score of 0.95 with our logistic regression 
(LR) model. For the severity prediction task, we achieved the highest accuracy of 0.76 
with an LR model. Beyond classification and predictive modeling, our study founds ML 
models performed better on integrated multi-omics data, rather than single omics. By 
comparing top features from different omics dataset, we also found the robustness of 
our model, with a wider range of applicability in diverse dataset related to COVID-19. 
Additionally, we have found that omics-based models performed better than image 
or physiological feature-based models, proving the importance of the omics-based 
dataset for future model development.

Conclusions:  This study diagnoses COVID-19 positive cases and predicts accurate 
severity levels. It lowers the dependence on clinical data and professional judgment, by 
leveraging the utilization of state-of-the-art models. our model showed wider applica-
bility across different omics dataset, which is highly transferable in other respiratory or 
similar diseases. Hospital and public health care mechanisms can optimize the distribu-
tion of medical resources and improve the robustness of the medical system.
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Introduction
Background

Healthcare centres urgently need novel technologies to identify symptoms for accurate 
diagnosis and severity prediction as a critical area. Coronaviruses, particularly those of 
the genus beta coronavirus (e.g. Middle East Respiratory Syndrome Coronavirus, aka 
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MERS-CoV and Severe Acute Respiratory Syndrome Coronavirus, aka SARS-CoV), are 
highly pathogenic agents of respiratory disease whose highly variable genetic diversity 
and diverse host-adaptive features make them lethal and devastating worldwide [1]. This 
diversity has led to the global spread and transmission to millions of people, with more 
than 6.4 million deaths from COVID-19 (SARS-CoV-2) worldwide [2]. The clinical pres-
entation of COVID-19 involves a wide range of symptoms and disease trajectories, and 
the clinical course of SARS-CoV-2 infection ranges from an asymptomatic state to a life-
threatening infection with a high degree of variability and host adaptation [3]. Therefore, 
in addition to research into vaccines for the prevention of COVID-19 and specific drugs 
for treatment, it is imperative to develop tools for the diagnosis and prognosis of patient 
susceptibility for determining the status of patients, for rational clinical treatment, and 
for better management of health care resources.

Most current research on COVID-19 has focused on its epidemiological and clini-
cal characteristics [4, 5]. There are two main methods for diagnosing COVID-19 today: 
bioassays and clinical characterisation. The mainstream biological diagnosis method 
requires virus nucleic acid detection, such as the RT-PCR nucleic acid detection method. 
It has fast diagnosis speed and high accuracy but needs professional experimental equip-
ment and researchers. Another mainstream method is to rely on the early symptoms of 
COVID-19. Fever, cough, and dyspnea are considered potential indicators of suspected 
COVID-19. The future severity condition of covid-19 patients are also scored and pre-
dicted mainly based on these indicators. The judgment in this method is direct, and the 
data is easy to obtain. Still, it can be affected by the numerous surrounding factors, and 
the accuracy and reliability are often compromised

Several bio-computing solutions, including machine learning (ML), are currently being 
developed for the diagnosis and severity prediction of COVID-19. Its’ high precision, 
high automation, and interpretability can benefit the public health system to mitigate 
COVID-19 effects, having great potential to interpret high-dimensional and complex 
datasets. Recently, several studies has explored different ML models for COVID-19 diag-
nosis and prognosis [6–8]. Brinati et al. [9] proposed ML model to detect the infection 
of COVID-19 based on routine blood, with accuracies ranging from 82 to 86%. Some 
studies have explored robust ML models based on patients’ conventional clinical data, 
disease history, epidemiological factors and other physiological characteristics to diag-
nose covid-19 [10, 11]. A study investigated the value of Chest-tomography (CT) images 
for covid-19 severity assessment and clinical outcome prediction [12]. The significant 
results of these studies proved the feasibility and clinical rationality of using ML method 
to diagnose and prognosis covid-19 patients.

While, there are several models and datasets for COVID-19 detection, there is a hand-
ful of dataset and models for predicting the severity of COVID-19. Predicting severity is 
an important task to identify the progression of the disease and direct severe patients to 
immediate medical support—which will ultimately reduce the mortality of the patients. 
Several biological data, such as peripheral blood samples and blood oxygen index, have 
been used as essential indecs to predict the severity of COVID-19 patients. Recent evi-
dence suggests that the severity of the disease depends largely on host factors. Many 
studies about the pattern of death with infection reveal surprising results: the cause of 
death cannot usually be attributed to the pathogen or the direct effects of any associated 
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toxins it produces. Instead, it results from a systemic inflammatory response by the 
host’s immune system; in a way, our immune system destroys our health [13]. These 
studies support the need to understand individual responses at the molecular level bet-
ter. With the deepening of research on COVID-19, medical research institutions have 
produced a large number of omics data [14]; however, the research on the influence of 
COVID-19 on the host’s omics data is not adequate.

Initial studies were based on single-omics data; for example, Macías-García et al. [15] 
proposed a limited set of related genes to characterise breast cancer recurrence based on 
DNA methylation data using autoencoder and random forest (RF) classifier. Park et al. 
[16] used large-scale gene expression and DNA methylation data to predict Alzheimer’s 
disease by a neural network model, showing that such integration of DNA methylation 
data improves prediction accuracy. Multi-omics provides a better representation of the 
host’s physiological condition and extent of disease, and several experiments have con-
firmed the feasibility of histology-based disease diagnosis and prognosis. A study ana-
lysed serum samples of critical and non-critical COVID-19 patients [17]. They trained 
ML models using proteomic and metabolomic measurements and validated the classi-
fication results in an independent cohort, revealing characteristic serum in critically ill 
COVID-19 patients’ protein and metabolite changes that can be used to select potential 
blood biomarkers for severity assessment. It demonstrates the great potential of multi-
omics data for COVID-19 diagnosis and prognosis.

At present, the research on covid-19 using ML mainly focuses on the clinical informa-
tion of covid-19 patients. Often the host-response, e.g. early stage of COVID-19, at the 
physiological level is undetectable, which can be captured easily at the molecular level. 
The host response at the molecular level is vital and often provides numerous features 
for ML models to train on. Besides, to make the scenerio even more complicated, the 
responses often modulated several bio-molecules and underlying pathways—which can 
not be answered by analyzing a single omics study. There is a scarcity of ML models for 
omics-based dataset to detect covid, and extend the modeling towards developing sever-
ity prognosis modelling.

The aim of our research is to apply the value of a large number of omics data to 
develop high-precision diagnostic and prediction tools for covid-19. We built a covid-19 
diagnosis and severity models, based on single and multi-omic data. The study showed 
potential to be applied in diverse omics datasets, related to different respiratory diseases.

Results and discussion
COVID‑19 diagnosis and prognosis using single‑omics data

First we explored the single omics dataset for diagnosis and severity prediction model. 
We collected DNA-methylation [3], RNA-seq or Transcriptome data [18], Metabo-
lomics [19] and proteomics data [17] from different studies. Among these dataset, only 
DNA-Methylation datase has both anotations of presence/absence and severity levels. 
The RNA-seq dataset lacks distinct classification standards for the severity of COVID-
19 patients, so we only performed COVID-19 negative and positive classification tasks 
on this dataset. The Proteomics and Metabolomics dataset lacks accurate identifica-
tion of COVID-19 negative and positive patients, so we performed COVID-19 severity 
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prediction and not the negative versus positive classification on this dataset. The work-
flow of this single omics experiment is shown in Fig. 1.

COVID‑19 diagnosis: negative and positive classification

We used several single omic data to build ML models for COVID-19 negatives and posi-
tives classification. We first used DNA methylation data and RNA-seq data. We used 
5-fold cross-validation on a total of 128 and 54 available samples in the DNA methyla-
tion and RNA-seq datasets, respectively, so the total number of samples tested in each 
fold was around 25.6 and 10.8 in these two datasets.

Table  1 presents AUC, accuracy and F1-score of multiple models for the evalua-
tion of negative and positive classification of COVID-19 using DNA methylation data 
and RNA-seq data without and with PCA processing. Overall, with PCA, we get bet-
ter outcomes in all models. In terms of ML model, Linear regression (LR) performed 
best on both dataset, obtaining the best accuracy, F1-score and AUC of 0.91, 0.95 and 
0.79 respectively for RNAseq data. While comparing performances of DNA-methyl-
ation and RNAseq data, it seemed, the performances were almost similar in “without 
PCA”, but after applying dimensional reduction, the performance of the RNA-seq model 
enhanced substantially, indicating the dimensional reduction method works better for 
RNAseq-data. On the other side, the KNN model performed the least, even though 
PCA improved its overall performance a bit. It might be due to the architecture of the 
KNN model, which calculates the distance from the input points to the sample points 
and receive a larger sample size of data from the unbalanced data. While using RNA-seq 
data, MLP achieved the best performance, with an accuracy of 0.99. LR also has a good 
prediction performance, having an F1-score of 0.98.

Since the data has high dimensionality, we applied PCA and trained the model under 
the same conditions. With a dimensionality of 100 after dimensionality reduction, the 
performance of the model improved. In the case of MLP, the dimensionality reduction 
resulted in a significant performance improvement of around 0.37 in RNA-seq data, as 
too high dimensionality can make MLP harder to fit or overfit due to the complexity of 
the network structure.

In addition to the performance improvement, the feature transformation significantly 
reduces time and machine costs when training the model. In the same environment, the 
training time and RAM usage before PCA processing is about three to five times that of 
the processed data. Therefore, an appropriate feature transformation approach can sig-
nificantly improve the performance of the model and reduce the learning cost.

Fig. 1  The workflow of diagnosis and prognosis of COVID-19 using single-omic data
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COVID‑19 severity prediction

First, we predicted COVID-19 severity by DNA methylation data, proteomics data, and 
metabonomics data. In the processing of high-dimensional data, we analyzed and con-
firmed that PCA has a better optimization effect on the training of ML models on high-
dimensional data. Therefore, we used PCA to reduce the dimension of single omics data 
used for COVID-19 severity classification, and the dimension selection was based on the 
number of training set samples.

On different data sets, there are different criteria for distinguishing the severity of 
COVID-19, and it is divided into different numbers of severity levels. In DNA methyla-
tion data, we have three different severity levels, and in proteomics data, there are two 
severity levels. Therefore, the confusion matrix cannot be used to directly compare the 
classification results between different omics data. So, we evaluated the performance of 
classifiers on different omics data through different evaluation indicators (Table 2).

Our model got 0.70 accuracy for COVID-19 severity classification on different data 
sets. In DNA methylation data, the LR model achieved 0.76 accuracy. We have achieved 
a preliminary prediction of the severity of COVID-19 on the single group data. There 
was no significant improvement in the performance with various optimisation meth-
ods and parameter adjustments. The probable reason for such a low score is the limited 
features within a single omics data, while the prediction of COVID-19 severity involves 
complex molecular interaction among diverse molecules. Besides exploring other feature 
extraction methods and hyper-parameter optimizations, there is an enormous potential 
of improvement by integrating multi-omics data. Therefore, it directs us to mine multi-
omics data for a more complete prediction scheme.

COVID‑19 severity prediction using multi‑omics data

In this experiment, we used a multi-omics dataset, containing transcriptomics, protem-
ics, metabolomics and lipidomics [20]. The dataset also contains annotations for both 
COVID-19 detection and severity levels based on hospital admission. The workflow of 
this experiment is shown in Fig. 2.

Severity subgroups

In order to classify and predict the severity of COVID-19 cases using multi-omics 
data, we used 100 samples obtained containing their 4-omics data. Each sample had 

Table 2  The performance of different ML models and single omics dataset for COVID-19 severity 
classification

Bold indicates best performing model

Model DNA methylation Proteomic Metabolomic

AUC​ Accuracy F1-score AUC​ Accuracy F1-score AUC​ Accuracy F1-score

SVM 0.54 0.56 0.40 0.52 0.54 0.41 0.50 0.55 0.30

RF 0.68 0.72 0.59 0.68 0.72 0.69 0.67 0.72 0.59

LR 0.70 0.76 0.64 0.60 0.56 0.64 0.58 0.53 0.54

KNN 0.60 0.59 0.51 0.52 0.59 0.48 0.60 0.49 0.51

RUS 0.48 0.53 0.42 0.52 0.59 0.48 0.39 0.35 0.32

MLP 0.69 0.73 0.74 0.66 0.67 0.74 0.68 0.70 0.72
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transcriptomic, lipidomic, proteomic, and metabolomic data. For these 100 samples, 
we first preprocessed (discussed earlier) and obtained 13,263 features for transcrip-
tomics, 647 features for lipidomics, 517 features for proteomics, and 105 features for 
metabolomics.

We used an autoencoder model, taking the stacked matrix of the 4-omics data as 
the input and output of the model, and then extracted the 500 nodes of the bottleneck 
layer as the result of the feature transformation. As the performance of the autoen-
coder is strongly influenced by the environment, the hardware environment, includ-
ing RAM and GPU resources, we, conducted three iterations of the model to ensure 
the stability of the experimental results.

For each transformed feature, we performed a one-way correlation analysis. As the 
features generated by the autoencoder were not fixed, by analysing the Kendall cor-
relation between the features and HFD-45 (hospital-free days at day 45), we retained 
an average of 455 features after three iterations and penalised them by elastic network 
regression to obtain a final sample of 42 features for clustering.

After clustering, we got two obvious subgroup by their distribution. We name the 
subgroups by G1 and G2. By looking at the clinical data of the two subgroups, we 
analysed the severity differences between the two subgroups obtained by clustering. 
We reduced the dimension of the sample into two dimensions by PCA. The difference 
in severity between the two subgroups was clear, and it was found that the severity of 
G1 was higher than that of G2 because the HFD-45 value of G1 was much lower than 
that of G2. To assess the validity of the clustering results, we compared each pair of 
sample combinations between the two subgroups. The predicted and actual results 
are consistent if the HFD-45 value of the sample from the subgroup with less severity 
is greater than the other comparison sample.

By comparing the values of HFD-45 between the two subgroups, we observed that 
the subgroup labels generated by clustering obtained a good agreement with the 
c-index of 0.76. At the same time, several indicators showed significant differences 
between these two subgroups, with a mean HFD-45 of 15.87 and 27.38 for first and 
second group. The considerable variability between the two means indicates a good 
differentiation in COVID-19 severity between the two subgroups. Therefore, the 

Fig. 2  The workflow of COVID-19 severity prediction using multi-omic data
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generated clustering labels effectively reflect the severity of COVID-19, with good 
discrimination between the different clinical stages of the case sample.

Severity prediction

A good severity classification cannot be achieved by using a single indicator as a clas-
sification label, so we cluster the samples and then performed supervised learning. We 
used the feature-processed sample data as training data, and the clustered 0–1 labels 
and HFD-45 median values as learning labels for the supervised models. We constructed 
SVM, RF, LR, KNN, RUS, and MLP models, obtained average results using 5-fold cross-
validation, and repeated the experiments 3 times to ensure stability. The AUC, accuracy, 
F1 score, and c-index are shown in Table 3.

We have observed that the labelled subgroup generated using the clustering training 
performed superior on several models. The RF and RUS models achieved significantly 
good performance here, as the labels were clustered by K-means, whose decision process 
is to select close category labels based on sample characteristics, similar to the decision 
process of ML models such as RF and KNN, and therefore more likely to achieve good 
performance. However, MLP was unable to fit the data better and therefore does not 
perform as well as the classical ML models.

While using cluster labels, we obtained a high prediction accuracy using the RF model. 
When training the model, we have achieved the correct classification for each data point 
through 5-fold cross-validation. The reason for high accuracy is that the sample size of 
test data after k-folding is small, and the model can predict all samples successfully. Sec-
ondly, the labels were obtained from individual clustering subgroups. Clustering labels 
affect the decision-making process of RF with high accuracy, which also indicates that, 
there is no overfitting problem within the prediction. However, we only obtained accu-
rate predictions based on the subgroup labels, and a c-index of 0.76 reflects the pre-
diction effect of the model on the sample ground truth. While using HFD-45 median 
values, we selected 100 samples with an overall median HFD-45 of 26 and a mean of 
22. Since the presence of deceased cases, as well as undischarged cases with an HFD-45 
value of 0, would have an impact on the overall distribution, we chose a median HFD-45 
= 26 as the classification criterion and labelled patients as severe and less severe.

From Table 3, we observed that, for all models except LR, the classifier with the HFD-
45 criterion can classify most of the samples correctly, but the performance drops nearly 

Table 3  The evaluation result of multiple machine learning models using clustering labels and HFD-
45 median to predict COVID-19 severity

Bold indicates best performing model

Model Clustering labels HFD-45 median

AUC​ Accuracy F1-score c-index AUC​ Accuracy F1-score

SVM 0.96 0.96 0.96 0.75 0.54 0.54 0.58

RF 1.0 1.0 1.0 0.76 0.73 0.73 0.74

LR 0.82 0.82 0.79 0.68 0.85 0.84 0.84
KNN 0.98 0.98 0.99 0.72 0.66 0.66 0.64

RUS 0.99 0.99 0.99 0.75 0.80 0.79 0.81

MLP 0.65 0.65 0.78 0.64 0.65 0.65 0.78
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20% compared to the classifier with subgroups as labels obtained by clustering, especially 
in the RF and the KNN models. If only the HFD-45 criterion is used on high-dimension 
samples, then the performance of the classification is lost as the key loci are not used as 
classification features while training. Secondly, as only the median of HFD-45 was used 
as the differentiation criterion, the difference between the omics data of patients close to 
the median and those far from the median was large. The way of classification ignored 
the variability of the samples within the interval. Therefore, the labels obtained using 
sample clustering achieved better performance on the classification task compared to a 
single clinical assessment criterion.

Performance of autoencoder with different input omics data

The use of different combinations of omics data as input features had a significant impact 
on the performance of the autoencoder. Figure 3 depicts a radar graph of the c-index of 
different combinations of omics data as input in our autoencoder model. It proves that 
the performance of the classification model based on multiple omics data is superior to 
that of single-omics data.

The autoencoder model using 4-omics achieves the highest c-index, reaching 0.72. 
This result indicates that the multi-omics data is more suitable for model construc-
tion than the single-omic data. The c-index of most combinations with transcriptom-
ics is high, and a c-index higher than 0.6 indicates that the severity correlation between 
Transcriptomics and COVID-19 is stronger. The prediction performance with single 
Metabolomics showed the least value of 0.49. Within single omics dataset, the c-index 
of Proteomics and Transcriptomics dataset are similar (0.66). Interestingly, the c-index 
of the combination of Proteomics and Lipidomics reached 0.68, but the addition of 

Fig. 3  Rader graph of the c-index of different combinations of omics data in autoencoder. Trans 
transcriptomics, Meta metabolomics, Pro proteomics, Lip lipidomics
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Metabolomics reduced it to 0.62. The results showed that the prognostic ability of each 
omics data may not be additive.

Autoencoder versus its alternatives

To demonstrate the superiority of our Autoencoder-based deep learning model, we 
have conducted a comparative analysis of related models with our model. In addition to 
autoencoder-based multi-omics feature integration, traditional dimensionality reduction 
methods, such as principal component analysis (PCA) and cluster reduction methods, 
such as integral cluster analysis (iCluster) were also incorporated to evaluate the perfor-
mance of multi-omics integration methods.

In the first method, we use PCA for feature transformation. Since our sample size was 
only 100 cases, we restricted PCA to reduce the feature dimension only to 100. After 
PCA converted the initial features to 100 principal components, Kendall correlation 
analysis was performed on the selected new features and only features with p values 
< 0.05 were retained, resulting in the retention of 28 major components. The samples 
were clustered to obtain two COVID-19 severity subgroups and analysed with a c-index 
= 0.58. However, this method failed to significantly improve the consistency index 
between subgroups compared to the model using the autoencoder and showed poor 
performance in classification.

In the second method, we used iCluster for dimensionality reduction. Unlike PCA 
and autoencoder, iCluster analysis does not have to transform the initial omics features 
into new features, but rather groups the samples based on four omic data. Samples were 
clustered into groups directly based on the features from multi-omics data. iClusterPlus 
showed good predictive efficacy in both survival subgroups with a c-index = 0.62, but 
still, no significant improvement over the autoencoder-based model. The results of the 
comparison by c-index suggested that autoencoder-based multi-omics integration is 
superior to these alternative methods.

Verify the robustness of severity subgroups in independent data sets

To demonstrate the robustness of classification in predicting prognosis, we built two 
supervised classification models based on proteomics and metabolomics. We predicted 
the classification labels of samples from the validation dataset. We first performed Min-
Max normalisation on each of the omic data. Then we selected the top N features of the 
most relevant to the clustering labels (obtained from the K-means) based on an analy-
sis of variance (ANOVA). We set the default N value to 50 for proteomics and metabo-
lomics, and 100 for transcriptomics and lipidomics. The top 20 significant features for 
each group are shown in figures: lipidomics and transcriptomics in Fig. 4, proteomics 
and metabolomics in Fig. 5.

The comparision of the top 50 important features within our model (proteomics and 
metabolomics) and another COVID-19 severity prediction study, Shen et al.  [17] have 
shown several overlapping features. These results suggest that our multinomial data can 
be used to accurately predict the severity of any omics datasets related to COVID-19. 
Besides predictive modelling, these top features can be utilised in wider range of stud-
ies ranging from biomarker development to diagnose or prognose different levels of 
severity.
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Besides, in the supervised learning models, independent omics data obtained results 
similar to training data. Proteomic data obtained the best performance on the RF model, 
with a c-index of 0.72. Metabonomics data obtained a c-index of 0.68 on the RUS model. 
The validation for robustness exemplifies the value of the information we obtained about 
the omics features for application on additional new dataset. The method we use not 
only yields good results on the training dataset, but also with the trained model, which 
can be used with the same type of omics data.

Comparative analysis

In order to demonstrate the originality and validity of our work and its contribution to 
related work, we compare our results with those achieved by current related work in two 
ways: (1) omics data in any disease, and (2) omics and other data in COVID-19 disease 
only. We further discuss the advantages and shortcomings of each study, including our 
work.

Any disease prognosis/prediction with omics data

Past studies have used a combination of ML models and omics data to achieve an accu-
rate prognosis for different diseases. We compared our achievement with several repre-
sentative works in different evaluation methods, shown in Table 4.

Fig. 4  Top 20 difference features between subgroups. a Lipidomics. b Transcriptomics

Fig. 5  Top 20 difference features between subgroups. a Proteomics. b Metabolomics
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Compared with the current extensive schemes, the performance of our methodology 
is significantly higher. This result may be due to the severity of the influence on the omic 
components of patients with COVID-19. Generally, severe cancer patients will have 
extensive and complex physiological changes affected by the disease. It results in com-
plex omics data, which is not easy to predict the prognosis of the disease. We compared 
our study with the prediction of Alzheimer’s disease by Park et al. [16] based on DNA 
methylation data and RNA-seq data. They put forward a multi-omics data scheme, by 
combining different sources, which significantly makes up for the lack of data in training 
prediction models. We also use the idea of multi-omics fusion, and experiments have 
proved that multi-omics data have better prediction performance than single omics data. 
In comparision with other studies, Sammut et al. [21] got 0.86% accuracy to predict the 
response to treatment of breast cancer, and discussed the effect of multi-omics fusion. 
Macías et al. [15] used autoencoder to predict re-occurence of breast cancer with single 
omic data (DNA methylation). Both of the studies used small dataset with high feature 
dimensions—which are often lack reliability. The work of Park et al. [16] combined and 
extracted features for omic data by biological information to predict Alzheimer’s disease. 
However, the used data are not from the same group of samples and the generated data-
set can lead to the over-fitting problem.

Our current research are consistent with previous studies on liver adenoma [22] and 
neuroblastoma [23], which combine omics data with deep learning to improve the effect 
of feature processing of omics data. We have additionally feature-engineered using 
elastic network regression and optimised on a variety of ML models to obtain optimal 
performance. Compared with the subgroup classification and prediction of thymic car-
cinoma, liver cancer, and neuroblastoma, our study on COVID-19 obtained the highest 
consistency index.

COVID‑19 prediction

At present, many studies have explored the diagnosis and prognosis of COVID-19 from 
multiple dimensions and directions. We have compared our research with some of these 
studies (Table 5).

We have observed that, compared with the ML prediction model based on CT images, 
cough signals and clinical texts, our model achieved better performance. It might be due 
to the wide features extracted from molecular dataset. Omics dataset are often able to 

Table 4  Comparative analysis with related work on disease prediction using omics data

References Study target Outcome

This study COVID-19 severity prediction Accuracy = 0.98

Sammut et al. [21] Breast cancer therapy response prediction Accuracy = 0.86

Macías et al. [15] Breast cancer recurrence prediction Accuracy = 0.68

Park et al. [16] Alzheimer prediction Accuracy = 0.82

This study COVID-19 severity prediction c-index = 0.75

Lee et al. [22] Lung adenocarcinoma prognosis c-index = 0.65

Zhang et al. [23] Neuroblastoma prognosis c-index = 0.71

Chaudhary et al. [24] Liver cancer prognosis c-index = 0.68
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detect the onset of diseases, which cannot be visible in physiological responses or behav-
iours. Previous studies [1, 7] used different physiological datasets, which is cost-effec-
tive, but often lack the reliability of onset of the disease. Khanday et al. [25] build models 
based on clinical text, which sophisticated feature engineering and can be improved fur-
ther with deep learning methods. The biological significance of omics analysis can ana-
lyse the relationship between COVID-19 positive and host information, and carry out 
pathological research on COVID-19.

Overmyer et  al. [20] proposed a web-based tool to predict covid-19 severity from 
diverse ethnicity, age and sex. Compared to their work, We combined the deep learning 
network in the feature extraction. We generate the severity label from clustering instead 
of the original label from their work. Even though we used same dataset, we got superior 
results. We optimised the feature processing of high-dimensional omics data and used 
a variety of ML models for training. Our research uses the c-index as the main index to 
measure the clustering performance. Compared with the classification model based on 
the severity classification of clinical indicator HFD-45, our prediction based on cluster 
tags has achieved higher accuracy. Therefore, we conclude that our model has improved 
the prediction performance of COVID-19. While, we couldn’t directly compare our 
results with Cai et  al.  [12] and Aktar et  al.  [8]—where they used CT-scan images and 
blood profiles respectively for training and testing of their models, our result has found 
omics-based models work considerably well than ct-scan or blood profiles, and train-
ing the model with omic data uses less computing source than dealing with image data. 
Moreover, among the omics-based models our model scored the top accuracy. So for 
future model development for disease prognosis and severity prediction, the omics-
based datasets should need special consideration.

Conclusion and future direction
We obtained better results for both the tasks of COVID-19 diagnosis and severity pre-
diction. We implemented effective feature processing methods to solve the problem of 
high dimension and low sample size, which improves the performance of the model. To 
summarise the contribution of our work—we have first evaluated different single omics 
datasets with varying feature extraction methods and strategically progressed towards 
developing deep learning models for multi-omics dataset, related to COVID-19. Our 

Table 5  Comparative analysis with related work on COVID-19

References Study target Data used Outcome

This study Diagnosis Omic AUC = 0.95

Accuracy = 0.988

Laguarta et al. [7] Diagnosis Cough signal Accuracy = 0.985

Zakir et al. [1] Diagnosis Cough signal Accuracy = 0.940

Khanday et al. [25] Diagnosis Clinical text Accuracy = 0.962

This study Severity prediction Omic Accuracy = 0.980

Overmyer et al. [20] Severity prediction Omic Accuracy = 0.960

Shen et al. [17] Severity prediction Omic Accuracy = 0.930

Cai et al. [12] Severity prediction CT image AUC = 0.928

Aktar et al. [8] Severity prediction Blood samples Accuracy = 0.930
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study proved that, a combination of multi-omics dataset gave better predictive scores, 
compared to any score generated from any single omics data. We compared our models 
in terms of other diseases and also related to COVID-19 models, and found that our 
model outperformed all other disgnosis and severity prediction models. We give an 
effective COVID-19 diagnosis and prognosis method based on ML, which can be used 
in the healthcare system for infectious disease control and graded treatment, to some 
extent improving public health governance.

This research has generated several potential and promising directions for future 
work. First, we will investigate the ability to generalise the findings. Our current work 
can only guarantee validity in the four-omics features for limited number of samples. To 
contribute more to public health, we will further investigate other large-volume data-
set, as well as increase the diversity of our dataset by selecting samples from different 
backgrounds. It will also be possible to enrich the type of omics data we use and obtain 
more extensive conclusions. We will use other ML models with complex structures for 
learning. Further, our current work is limited to the use of omics data for diagnosis, with 
a lack of experimentation with other medical data. In future work, we will add features 
like clinical information and patient health status to the input of the model. We analysed 
the Pearson correlation of clinical information and cluster label, where we observed that 
the label showed a strong correlation with multiple clinical information, such as Lym-
phocytes per cent. We would explore the optimisation and impact of additional data on 
current protocols. To investigate the use of the kind of combination that would allow for 
better diagnosis and prognosis of COVID-19 patients. Future research shall also focus 
on using pre-regulated and down-regulated expression genes from the omic signature 
for ingenuity pathway analysis. This approach would help investigate the value of our 
results for applications in biological and disease research.

Method and experimental setup
COVID‑19 diagnosis and prognosis using single‑omic data

This research first diagnosed COVID-19 (negative and positive classification), fol-
lowed by severity prediction. We collected and processed multiple single omics data: 
DNA methylation, RNA-seq, Proteomics, and Metabolomics. Details on these datasets 
are included in Additional file 1 (omics data). We utilised ML models for diagnosis and 
prognosis. We tuned the model parameters and optimised the performance. Further, we 
optimised the dataset’s quality by sampling the data when the sample distribution was 
imbalanced. Next, we adopted a k-fold cross-validation approach to obtain average eval-
uation results.

Data preprocessing

Removing abnormal and erroneous data was the first step in data preprocessing. Five 
samples were removed from the proteomics and metabolomics dataset as they did not 
have proteomic data. For the treatment of null values in the dataset, we removed the 
feature with null values greater than 20% and performed zero value padding. As the data 
dimension was much larger than the number of samples, we reduced the dimension by 
principle component analysis (PCA) to efficiently train the models. For the samples, we 
reduced the dimension of features to the number of samples. We report the models’ 
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performance, both with and without PCA, to demonstrate the role of PCA in the data-
set. In our datasets, COVID-19 negative samples only account for a small part, result-
ing in severe imbalance data. To tackle data-imbalance problem random undersampling 
boost (RUS) was optimised using AdaBoost method. To compensate the imbalance and 
ML performance, we further applied SMOTE (synthetic minority oversampling tech-
nique) sampling method for data balance [26, 27].

Classification model

We implemented several ML models, namely support vector machine (SVM), random 
forest (RF), logistic regression (LR), K-nearest neighbourhood (KNN), random under-
sampling boost (RUS), and multilayer perceptron (MLP) algorithms. We adjusted the 
parameters of the MLP, including the number of connected layers and the number of 
nodes, to get better results for different dataset. The number of layers, nodes, dropout, 
and activation functions were decided using experiments, shown in (Table 6).

COVID‑19 severity prediction by multi‑omic data

In this experiment, we used a unified dataset containing four omics data [20]. The data-
set was collected from 128 adult SARS-CoV-2 virus-associated patients from Albany 
Medical Center in Albany, New York, USA. Blood samples of these patients were col-
lected, and then transcripts, proteomics, metabolites, and lipids were measured from 
plasma. Description of the dataset can be found in Additional file  1. We performed 
feature selection with deep learning and statistical methods to select loci under critical 
conditions. Patients were classified into severity subgroups by unsupervised clustering. 
We determined their agreement with actual data and accuracy in supervised learning, 
validating their robustness with additional separate omics data.

Data preprocessing

We first removed the features with unknown labels in the metabolomics (45 unknown 
features) and lipidomics (2710 unknown features) analyses for data preprocessing. Then 
we cleaned the data by eliminating features and samples with NA values greater than 
20% or zero values. The samples were then filtered to retain only patients with all four 
valid omic data, with some samples missing some omic data. Eventually, the final omic 
data was obtained for 100 patients.

The training dataset does not contain survival status and patient information over 
a continuous period, so we cannot directly rely on survival time as a severity meas-
ure. It requires us to select a value that reflects multiple indicators as an evaluation 
criterion. In this case, we used hospital-free days at day 45 (HFD-45) [20]. This score 

Table 6  The structure and parameters of a fully-connected MLP model on different data sets

Parameters DNA methylation RNA-seq Proteomics Metabolomics

Number of layers 3 2 2 2

Nodes of layers [100, 64, 32] [32, 28] [24, 12] [24, 12]

Dropout 0.3 0.0 0.0 0.0

Activation function Relu Relu Tanh Tanh
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assigns a zero value (0-free days) to COVID-19 patients with a length of stay longer 
than 45 days or who died on admission. It gives a higher HFD-45 value to patients 
with a shorter length of stay and less severe disease. In terms of mean values, mem-
bers of the healthy group had significantly higher HFD-45 values (mean = 32.3) than 
members of the COVID-19 group (mean = 22.0), with a p value of 0.004.

Autoencoder We used multi-omics datasets to build COVID-19 diagnosis and sever-
ity prediction models, which have high feature dimensions. We used autoencoder, 
correlation analysis, and elastic net regression to reduce the feature dimension and 
avoid over-fitting risk. In our work, the data of 100 patients were used as the input of 
the autoencoder using the preprocessed four-omics data. The four omics data were 
stacked into a matrix through sample scaling.

To build the autoencoder model, we chose relu activation function in input and hid-
den layers, and tanh activation function in the output layer. We used binary crossen-
tropy loss function, which calculates the error between the input data and the output. 
L1 and L2 regularisation was used to reduce overfitting, where the L1 and L2 param-
eters were 0.001 and 0.0001, respectively. We used Python (v3.8.16), Sklearn (v1.0.2) 
and Keras (v2.9.0) to build an autoencoder and saved the value of the bottleneck layer 
node as a new feature extracted from the original four-omics data. We experimented 
with different combinations of hyperparameters while constructing the autoencoder 
model (Table 7).

We observed that performance decreases significantly if the number of hidden layers 
exceeds three, if the number of hidden layer nodes increases, or if the training epoch is 
large. However, with only one hidden layer, or too few hidden layer nodes, the model 
is less efficient at feature learning, affecting performance. Conversely, as the number 
of nodes in the bottleneck layer of an autoencoder model increases, the model’s per-
formance can usually be improved, as the increased number of nodes in the bottleneck 
layer retains more feature information, which also helps the model to reduce the loss 
during training. Accordingly, we selected the autoencoder model having five layers. 
The first was the input layer, with three hidden layers in the middle, with the number 
of nodes of 1000, 500, and 1000, respectively. The middle layer was the bottleneck layer.

Correlation analysis After the autoencoder reduces the number of original features 
to 500 transformed new features obtained from the bottleneck layer, we choose an 
appropriate feature selection method to reduce the feature dimension further. We 
chose the Kendall rank correlation coefficient for cross-group correlation analysis to 
study the amount of linear correlation between variables.

Table 7  Experimented autoencoder structures with different combinations of parameters

Parameter Model 1 Model 2 Model 3 Model 4

Number of layers 5 5 3 7

Connect layer size 2000 1000 1000 3000

Bottleneck size 500 500 300 500

Learning rate 0.001 0.001 0.0001 0.0001

Epoch 10 10 20 20

Dropout 0.2 0.5 0.2 0.5

c-index 0.76 0.68 0.62 0.59
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We calculated the correlation and chose HFD-45 as the element selection standard to 
analyse the correlation of 500 features generated by the autoencoder. The elements with 
a p value < 0.05 were selected as the top-level characteristics significantly related to the 
severity of COVID-19.

Elastic net regression

We further selected the retained features from the correlation analysis in our work. We 
used elastic network regression. We used the values of the characteristics of all COVID-
19 patients with p values < 0.05 in the correlation analysis as covariates and HFD-45 as 
the response variable. After several sets of experiments, we chose the parameter � of 
regularisation intensity of elastic network regression to be 0.5, the parameter α of bal-
ancing the intensity of L1 and L2 penalty terms to be 0.5, the threshold of convergence to 
be 0.001, and the maximum number of recursions to be 10000 times. We used this set of 
parameters to fit the complete data set.

Severity subgroup analysis

In order to identify the best number of severity subgroups and obtain the key loci 
between groups affecting the severity, we used the K-means clustering algorithm for 
clustering. We determined the optimal number of clusters (K) using the elbow method 
[28], which uses the square of the distance between the sampling point and the clus-
ter centroid in each cluster to give a series of K values. The sum of squared error (SSE) 
is used as a performance index. By drawing the K-SSE curve and finding the inflection 
point downward, the K value can be better determined. We built a K-means clustering 
model using sklearn. We observed SSE versus K graph for K = 1 to 20 (Fig. 6). It was 
found that when K = 2, the SSE value decreases significantly. We, therefore, divided the 
sample into two COVID-19 severity subgroups.

Prediction model construction for severity

In order to clarify the robustness of survival subgroups, we used a series of ML models 
belonging to supervised learning algorithms to classify the severity of COVID-19. The 
classification labels used for these ML classifiers were determined by K-means clustering 

Fig. 6  Elbow method folding diagram to determine the number of clusters K
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rather than using a single clinical feature. In order to check the effectiveness of the per-
formance of labels and features generated by the autoencoder, we performed 10-fold 
cross-validation to obtain the average evaluation results.

Verification of robustness of severity subgroups

To test the robustness of the subgroups obtained by clustering in terms of prognosis, 
we used independent proteomic and metabolomic datasets for validation. We obtained 
top-level different characteristics between the subgroups using analysis of variance 
(ANOVA). First, we performed Min–Max normalisation of the training set samples to 
avoid the effect of different feature data sizes on the ANOVA. We selected the top N 
features that are most relevant to the clustering labels (obtained from the K-means). 
Depending on the size and complexity of the dataset, we set the default N value to 50 for 
Proteomics and Metabolomics, and to 100 for Transcriptomics and Lipidomics.

We used ANOVA to collect the features with the greatest difference between the two 
severity subgroups in the training dataset. Among the features of proteomics and metab-
olomics, we selected the same features of the validation set (e.g., Q71DI3 in proteomics). 
We retained these features in the training dataset and generated a dataset for supervised 
training. To avoid differences in data platforms that result in data on the training dataset 
and the independent validation dataset, we used the StandardScaler method, which nor-
malises the training dataset and the independent dataset based on the mean and stand-
ard deviation of the training dataset [29].

Performance evaluation

Several evaluation metrics were used to evaluate individual model performances. We 
used Accuracy, F1-score, C-index and AUC as evaluation matrix. We used 10-fold cross-
validation and the average test evaluation results are reported. It provides generalised 
results, which enhances the reliability.

In our work, the c-index is used as an important parameter to measure the classifi-
cation accuracy of COVID-19 severity subgroups, and we redefined the calculation of 
the c-index based on the definition and calculation of the c-index. Concordance index 
(c-index), based on Harrell C statistics [30], is similar to AUC. It is calculated by ran-
domly forming pairs of all the study subjects in the data under study. The c-index usually 
occurs between 0.5 and 1 (the probability of agreement and disagreement is exactly 0.5 
for any pairwise random case). A value of 0.5 is complete disagreement, which means 
that the model has no predictive effect, and 1 is complete agreement, which means that 
the model’s predicted outcome is precisely the same as the actual one. Besides, we used 
clustering labels and HFD-45 median to predict the severity in four-omics dataset.

Hardware setup

The experiments are conducted on a CPU with 25 GB RAM and an NVIDIA K80 GPU 
with 10 GB of memory on a Windows operation system. The work was implemented in 
Google Colab, with Python (v3.8.16), and other supporting ML libraries, including Ten-
sorflow (v2.9.2), Sklearn (v1.0.2), and Keras (v2.9.0).
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