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Abstract. Multiple sclerosis (MS) is a progressive neurodegenerative
disease with a wide range of symptoms, making it difficult to diag-
nose and monitor. Current diagnosis methods are invasive and time-
consuming. The use of smartphone monitoring is convenient, non-invasive,
and can provide a reliable data source. Our study utilises an open-source
dataset, namely—“Floodlight”—that uses smartphones to monitor the
daily activities of MS patients. We evaluate whether the Floodlight data
can be used in training a machine learning (ML) algorithm for MS di-
agnosis. After necessary data cleaning, we statistically measured the sig-
nificance of different tests. Preliminary results show that individual test
metrics are helpful for training ML algorithms. Accordingly, we use the
selected tests in support vector machine (SVM) and rough set (RS) al-
gorithms. Experimenting with several variations of the ML models, we
achieve as high as 69% MS diagnosis accuracy. Since we experiment with
SVMs and RSs on individual test metrics, we further report the relative
significance of those tests and corresponding ML models suitable for the
Floodlight dataset. Our model will serve as a baseline for developing
ML-based prognostication tools for MS disease.

Keywords: Multiple sclerosis · Diagnosis · Machine learning · Support
vector machine · Floodlight.

1 Introduction

Multiple sclerosis (MS) is a chronic autoimmune and neurodegenerative disease
characterised by progressive destruction of the myelin sheath, which insulates
nerve cells [2,5]. Damage to nerves of the central nervous system can lead to
severe physical and cognitive disability. Symptoms are widely varied and can
include blindness, muscle weakness, fatigue, neurological deterioration, and many
more [6]. As the disease progresses, these symptoms generally become more
severe.
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Currently, the precise cause behind MS is still unknown. The wide range of
symptoms and unpredictable progression of the disease create further difficulties
for diagnosis [4]. Diagnosis of MS is not straightforward and relies on a com-
bination of tests such as blood tests, lumbar puncture, or magnetic resonance
imaging (MRI) for lesions [5]. Some of these tests are intrusive but, even then,
do not return definitive results.

Although early diagnosis is crucial for treatment, multiple criteria must be
met before MS can be diagnosed confidently. For example, one major criterion is
that the patient experience two discrete neurological episodes of time and space
dissemination [10]. This way of diagnosis is problematic since it requires the
patient’s MS to be severe enough for this to occur. The expression of this symp-
tom also varies significantly among individuals. These symptoms and episodes
may also be unable to be monitored between clinical visits. Another significant
criterion is the detection of a lesion via MRI [3]. Again, this requires the disease
to have progressed far enough to have a lesion already. Furthermore, detecting
lesions is often time-consuming and prone to human error. For these reasons,
researchers are using machine learning (ML) algorithms to help with diagnosis
[13].

Most current studies that use ML for MS diagnosis utilise MRI scans. In this
area, ongoing research is extensive with several available datasets from various
clinical settings and prior studies. Numerous methods of data processing and
implementations of ML have been explored in this area [18].

Some studies investigate datasets aside from MRIs. Kaur et al. have explored
the use of ML to analyse the gaits of MS patients [9]. However, their study is
centred around monitoring disease progression, not the diagnosis. It also had a
small sample size of 20 MS patients weighted towards older adults, and thus it
requires more data to be generalised on different environments. Another study by
Pinto et al. used the standard expanded disability status scale (EDSS) and ML
to predict the progression of MS [16]. Therefore, existing non-MRI literatures
investigated MS prognosis but lacked the diagnosis.

Floodlight Open is a study that uses a smartphone app to collect data from
participants over time [14]. The app records information relevant to monitoring
MS progression in a noninvasive, consistent, and convenient manner. In this
sense, the use of the Floodlight data is unique and advantageous compared to
clinical tests since clinical tests may be invasive and cannot monitor patients
in-between multiple visits. The app supports several tests that the participants
can actively perform daily, such as drawing shapes, pinching, and answering
questions. Movements of participants are also passively monitored throughout
the day.

Existing studies that use the Floodlight Open data evaluate the extent to
which the smartphone app and the Floodlight tests can effectively track MS pro-
gression [19]. These studies confirm that smartphone monitoring is an effective
way to assess MS progression continuously [12]. Woelfe et al. conducted a study
with 264 participants over multiple weeks and found that repetitions of tests can
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lead to improvements of results due to practice [19]. Our study focuses on using
the Floodlight data for diagnosis instead of disease progression monitoring.

We apply ML on the Floodlight data to determine whether these tests are
helpful to diagnose MS. Firstly, we analyse the data to understand how it re-
lates to MS diagnosis. Furthermore, we train ML algorithms with the data for
predicting MS. This way of predicting MS may add a valuable noninvasive tool
for MS diagnosis. An individual should be able to take the Floodlight app tests
and input the results into the ML model. The ML model should then return the
likelihood of that individual having MS in terms of a percentage score. Among
different ML models, support vector machine (SVM) and rough set (RS) showed
great potential for different classification tasks.

We utilise SVM and RS algorithms to split data into two groups—individuals
with MS or without MS. Data belong to a plot on an n-dimensional space where
n is the number of variables related to the groups. The variables are the results
from the Floodlight tests as well as background information such as age, sex,
and height. A line is drawn between the data points, separating two groups.
This line defines which group new data points will fall into, which allows for
predictions on whether an individual has MS or not. Compared to other ML
algorithms such as random forest or decision tree, SVM is intrinsically suited to
two-class problems and draws the line to maximise the margin between the two
groups [1]. Hence we chose SVM to diagnose MS from Floodlight data. On the
other hand, RS theory uses two sets to approximate the lower and upper bounds
of an original set of data [11]. Unlike SVM, which ultimately sorts data into the
defined categories (MS or no MS), RS makes it possible to identify borderline
cases that do not fit into either lower or upper sets. This potential for “fuzziness”
is useful in a medical context because of borderline cases. In a scenario where
the SVM algorithm may classify a borderline case as not having MS, the RS
algorithm may be able to flag it for further observation.

This paper is structured as follows. Section 2 explains the methodologies
with a flow diagram of steps involved in this work. Necessary discussions with
the results achieved from data analysis and ML implementation are reported in
Section 3. The limitations of this study are explained in Section 4. Finally, we
summarised our works with potential future scopes in Section 5.

2 Method

Fig. 1 depicts the step-by-step processes we followed in this study, which are
explained in the following subsections.

2.1 Understanding the Data

The Floodlight data is open source and available for download on the web-
site4. A unique identifier (ID) is provided for each participant, so it is possible

4 https://floodlightopen.com/

https://floodlightopen.com/
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Fig. 1. Steps involved in this work.

to track which tests have been taken and how many times. Background infor-
mation, including age, weight, sex, height, country of residence, and whether
the participant has MS or not, is recorded. While accessing the database, there
were 568,600 data points and 2505 unique participants: 1150 participants were
without MS, and 1355 participants were diagnosed with MS. The participants
(Floodlight app users) self-reported whether they had MS or not. These numbers
vary among different test metrics (test metrics refer to different test categories
for the users), as detailed in Table 1. Even with this preliminary information,
it is possible to identify potential correlations and risk factors associated with
certain backgrounds.

Ideal input data for training any ML algorithm is data that very accurately
reflects reality. As mentioned previously, MS has varying degrees of severity.
To accurately represent this, a continuous spectrum where a higher number
indicates more severe MS and a lower number indicates less severe MS would
be required. However, the Floodlight data does not reflect this, as participants
are only given the option of stating whether they have MS or not. This binary
choice leads to some limitations for training the ML algorithm. Due to this lack
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Table 1. Number of participants for each test metric.

Test Metric MS No MS Total

Mean Hausdorff Distance 1229 969 2198
Top to Bottom Hausdorff Distance 1223 961 2184
Bottom to Top Hausdorff Distance 1223 960 2183
Circle Hausdorff Distance 1223 960 2183
Square Hausdorff Distance 1223 960 2183
Figure 8 Hausdorff Distance 1223 960 2183
Number of U Turns 1024 774 1798
Average Turn Speed 1024 774 1798
Number of Pinches 1230 981 2211
Daily Mobility Metric 1104 868 1972
1-5 Mood Scale 1297 1077 2374
IPS Correct Responses Baseline 1242 994 2236
IPS Average Response Time Baseline 1242 994 2236

of data, the fuzzy aspect of the RS algorithm was not utilised, and patients were
strictly sorted into the MS or no MS to easily compare with SVM performance.

An important distinction needs to be made here. For any given participant,
there are two crucial theoretical numbers: how likely the participant has MS ver-
sus how severe the participant’s MS is. Because the provided data only contains
information on whether the patient has MS or not, the ML model will only be
able to return the possibility of the participant having MS (and not its severity).
However, this possibility will most likely reflect the severity of the participant’s
MS. For example, if a patient with severe MS takes the Floodlight app tests,
this should be reflected in the results. Upon input into the ML model, the model
should return that the participant is highly likely to have MS. In contrast, if a
patient with mild MS takes the tests, the ML model will probably return that
the participant is less likely to have MS compared to the more severe case. In a
heuristic sense, the returned likelihood of a patient having MS may reflect the
severity of their MS.

2.2 Data Cleaning

The original data source contains a variable called “test name,” which describes
eight major tests types. These types correspond to actual tests that the partic-
ipants can perform in the Floodlight app. Each of these tests has one or more
corresponding test metrics. This metric is an integer on a continuous scale de-
scribing how the participant performed on that test. Each metric has a different
range and meaning.

Furthermore, a single test may return multiple test metrics. For example, in
the information processing speed (IPS) test, participants are asked to answer a
number of questions rapidly. Consequently, two test metrics are returned: the
number of correct responses and the average time per response. In the first case, a
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higher test metric (more correct responses) is a better result, indicating that the
participant is less likely to have MS or has less severe MS symptoms. Conversely,
for the average response time metric, if the participant has a higher test metric
(they take a longer time to respond to each question), the participant is more
likely to have MS or has more severe MS symptoms.

Accordingly, we developed a new dataset for each of the eight major test
types from the original data for ease of analysis. Within the new dataset, we
further split the data into corresponding test metrics described in Table 2.

Table 2. Floodlight test types.

Test Name Test Metric
Patient’s Condition at

Higher Score

Drawing shapes Number of correct shapes Better
Hausdorff distance difference
from correct shape

Worse

Pinching test Number of pinches Better

U-turn test Number of U-turns Better

Daily mood
questions

Mood on a scale from 1-5 Better

Sway path
and stability

Movement Worse

Number of steps
in 2 minutes

Number of steps taken Better

Information processing
speed (IPS)

Number of correct responses
Average time per response

Better
Worse

Monitoring of
daily mobilitya

Daily movement Better

aPassively monitored throughout day.

Within each of these test-metric subgroups, null values, zero values, outliers,
and other potentially incorrect values were identified and separated. These data
points could then be included or excluded. Repeating entries from the same
individuals were also handled systematically. If a person repeats a test multiple
times, the data for that person should be more accurate; however, it should
not lead to the individual being weighted more than others. Thus, repeats from
each individual were averaged into a single data point for input into the ML
algorithm.

Accordingly, the data within each test-metric was further divided into partic-
ipants with no repeats and participants with repeats. For participants with only
one data point (no repeats), the test metrics’ value was assumed to be correct
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as there is no point of comparison to verify whether the result is abnormal for
that participant.

Participants with repeats were separated into two groups. A filter was ap-
plied that identified individual participants with potentially incorrect values.
Test metrics were plotted for each individual, and it was determined whether
they contained any outliers within their own results. The outliers were calculated
using the interquartile range (1.5× above or below). The results of the unfiltered
participants (no self-contained outliers) were averaged into a single data point.

These three groups—individuals with no repeats, with consistent repeats, and
with repeats that have outliers—may be used in combination or individually for
inputting into the ML algorithm.

2.3 Preparation of ML Algorithm

For initial screening of which tests have the potential to perform better as input
into the ML Algorithm, the Kolmogorov-Smirnov and Mann-Whitney U tests
were performed on the cleaned data.

We made two groups for input into the ML algorithm: one group by removing
the individuals with outliers, and another by treating them similarly to individ-
uals without outliers (data points of the individual were averaged). Within these
two groups, it was also possible to choose whether to use only the test metric (an
integer) as the input data or include other variables such as age, height, weight,
etc. This gives four groups that can be input into the SVM and RS algorithms:
only test metrics without outliers, only test metrics with outliers, all variables
without outliers, and all variables with outliers.

The data from the filtered test metrics were then fed into the ML algorithms
imported from the python scikit-learn library [15] for SVM and the fuzzy-rough-
learn library [11] for RS. There are different options for SVM kernel: linear,
sigmoid, Gaussian, or polynomial. Each of the four data groups for each test-
metric can be input into these different kernels. Accordingly, we tested 16 SVM
and 4 RS variations for each test metric.

We split the data points of each test-metric in an 80/20 ratio: 80% for the
training set and 20% for the test set. We used accuracy as our evaluation metric.

3 Results and Discussion

3.1 Exploratory Data Analysis

We analysed the data to identify test metrics that can train the ML algorithm.
Ideally, useful test metrics would significantly differ in values when comparing
MS patients versus non-MS patients.

Firstly, the data were tested for normality using the Kolmogorov-Smirnov test
[7]. We found that most of the Floodlight tests were not normally distributed.
For this reason, the nonparametric Mann-Whitney U test [8] was conducted to
determine if the differences between MS positive and MS negative test metrics
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were statistically significant; the results are reported in Table 3 and Fig. 2. For
visual ease of comparison, Fig. 2 shows the negative log of the Mann-Whitney
U test p values, with the red line showing the − log10(0.05) threshold.

Table 3. Significance of difference between MS and non-MS patient test metrics.

Test Metric
Mann-Whitney U Test

p Value

Number of Correct Shapes 8.46× 10−2

Mean Hausdorff Distance 6.78× 10−3

Top to Bottom Hausdorff Distance 3.44× 10−2

Bottom to Top Hausdorff Distance 2.99× 10−3

Circle Hausdorff Distance 1.40× 10−2

Square Hausdorff Distance 6.53× 10−4

Figure 8 Hausdorff Distance 4.85× 10−5

Spiral Hausdorff Distance 4.50× 10−1

Number of U Turns 7.06× 10−4

Average Turn Speed 2.08× 10−3

Number of Pinches 3.17× 10−2

Daily Mobility Metric 7.95× 10−10

Number of Steps Takena 6.38× 10−6

Sway Patha 9.06× 10−1

1-5 Mood Scale 4.06× 10−29

IPS Correct Responses Baseline 8.95× 10−15

IPS Average Response Time Baseline 4.15× 10−27

IPS Correct Responsesa 3.12× 10−3

IPS Average Response Timea 3.90× 10−14

aTest metric result did not reflect expected meaning.

It can be seen that several Floodlight tests have promising p values, indicating
that the difference between MS and non-MS patients has the potential to be
recognised by an ML algorithm. The most statistically-significant differences are
the baseline IPS tests, the mood test, and the daily mobility metric. However,
three Floodlight tests—the number of correct shapes, spiral Hausdorff distance,
and sway path—showed high p values (> 0.05) and so were not used in the ML
implementation.

However, some of these results contradict what the test-metric values are
expected to reflect. For example, as shown previously in Table 2, if a patient takes
more steps in the 2-minute walk test, this should indicate that they are in a better
condition and are less likely to have MS. However, the average number of steps
by non-MS patients is actually lower than the non-MS patients in the Floodlight
dataset. Therefore, these specific Floodlight tests did not reflect the expected
meaning and were thus discarded from inputting into the ML algorithm.
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Fig. 2. Tests which have a significant difference between MS and non-MS patients
according to the Mann-Whitney U Test.

3.2 ML Results

Table 4 shows the highest accuracy that we achieved for each test metric with
corresponding SVM kernel or RS algorithm.

It can be seen that the top to bottom Hausdorff distance had the highest ac-
curacy of 69%, followed by mean Hausdorff distance, square Hausdorff distance,
and daily mobility metric, all having an accuracy of 68%.

Regarding the performance of RS compared to SVM, the highest, 2nd, 3rd,
4th, and 5th highest performances were achieved using the RS algorithm. Among
SVM kernels, the linear kernel performed the best. In most Hausdorff distance
test metrics, the Sigmoid and Gaussian kernels had very similar performances
but were poor in comparison to the linear kernel.

Among different data subgroups of whether to consider outliers and all vari-
ables, all variables with outliers often gave the best accuracy (Table 4). There-
fore, it implies that outliers removal is potentially unnecessary, and patients’
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Table 4. Implementation results.

Test Metric
Most Effective

Algorithm
Accuracy

Mean Hausdorff Distanceb RS 68%

Top to Bottom Hausdorff Distanceb RS 69%

Bottom to Top Hausdorff Distanceb RS 67%
Circle Hausdorff Distancea RS 67%
Square Hausdorff Distancea RS 68%
Figure 8 Hausdorff Distancea RS 65%

Number of U Turnsb Linear SVM 63%

Average Turn Speedb Linear SVM 67%

Number of Pinchesb Linear SVM 64%
Daily Mobility Metrica RS 68%

1-5 Mood Scaleb Linear SVM 64%
IPS Correct Responses Baselinea RS 64%

IPS Average Response Time Baselineb Linear 65%
aAll variables without outliers.
bAll variables with outliers.
cOnly test metric without outliers.
dOnly test metric with outliers.
Acronyms: RS – rough set, SVM – support vector machine.

background information, such as age, height, weight, etc., positively influences
ML-based MS diagnosis.

We could not directly compare the outcomes of this study to related litera-
ture since, to the best of our knowledge, there is no existing research that has
similarities to the test metrics used.

4 Limitation

As mentioned previously, the severity of a patient’s MS is not recorded in the
provided Floodlight dataset. This led to the ML algorithm only being able to
return true or false as a prediction for whether the patient had MS. This scenario
means that a patient with very severe MS and another with very mild MS
would both output true with no way to distinguish between the two in terms of
certainty. If it were possible to obtain data on the severity of each participant’s
MS, for example, through an EDSS score, it might be possible to distinguish
between these two cases, especially using the RS algorithm.

It is worthwhile to note that the current accuracies are achieved using only
single test metric within the dataset. For example, the 69% accurate prediction is
achieved using data only from the top to bottom Hausdorff distance and nothing
else. Thus, combining all Floodlight tests will most likely increase prediction
accuracy.
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Even though MRI-based studies to detect neural damage or demyelinating
changes in the brain are proven as gold-standard to detect MS, we aimed to
develop a cost-efficient ML model based on physiological signals, which will pave
the way for future MS prognostication. Physical and physiological signals have
shown great potential for monitoring mental health [17], and our study also prove
their potential for MS detection.

5 Conclusion and Future Work

This study has investigated the potential of utilising the tests from the Flood-
light smartphone app for diagnosing MS. We found that multiple test metrics
could provide information that may distinguish between MS and non-MS pa-
tients. First, the Floodlight data were cleaned from repetitions and outliers.
After applying two statistical tests—Kolmogorov-Smirnov and Mann-Whitney
U test—we acquired statistically significant data that we used in SVM and RS
algorithms. Experimenting with four different SVM kernels and RS algorithm
on each of the selected tests individually, we achieved a maximum of 69% accu-
racy by a RS model in diagnosing MS patients using only a single test metric.
We report top to bottom Hausdorff distance as the most effective Floodlight
test metric. This research throw light on using smartphone monitoring data in
ML-based MS diagnosis. Future research might focus on further refinements,
such as implementing other ML algorithms like multilayer perceptron or deci-
sion trees, with further tuning on hyperparameters using algorithms like grid
search method. Also, given a data set with information on the degree of severity
of MS, it may be possible to extend the application of RS “fuzziness.” Moreover,
since this study has focused on investigating each test-metric separately, we may
look into using multiple combinations or all of them in conjunction.
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