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Abstract—Facial Expression Recognition (FER) plays a crucial
role in understanding people’s internal states. While existing FER
methods have achieved high accuracy when facial features are
fully visible, the widespread use of masks during the COVID-
19 pandemic has led to a significant loss of facial information.
Although a few studies have explored masked FER by masking
publicly available datasets, the absence of benchmark datasets on
masked facial expressions poses a challenge. In this research, we
address this gap by generating and publishing masked versions
of two well-known datasets, namely FER2013 and CK+. Our
proposed approach focuses on upper facial features in masked
images to effectively handle the occlusion caused by masks.
Initially, facial landmarks are detected in the masked images,
which are then used to crop and align the images, retaining only
the region surrounding the eyes. Subsequently, a Convolutional
Neural Network (CNN) model based on a modified VGGNet
architecture, incorporating fewer convolutional filters and layers,
is trained and evaluated on the newly generated MaskedFER2023
and MaskedCK+ datasets. Our method achieves competitive
performance – accuracies of 0.6189 and 0.6356 on the Masked-
FER2023 and MaskedCK+ datasets, respectively – compared to
existing state-of-the-art occlusion-aware and mask-aware FER
methods. Additionally, we delve into the impact of masks on
the recognition of different emotions. Our experimental results
demonstrate that face masks significantly impede the recognition
of certain expressions, particularly ‘Sad’, while other emotions
like ‘Surprise’ exhibit lower sensitivity to masks. Implementa-
tion, experimentation and evaluation are publicly available at
https://github.com/hasan-rakibul/MaskTheFER.

Index Terms—convolutional neural network, CK+, facial ex-
pression recognition, FER2013, masked face, MaskedFER2023

I. INTRODUCTION

Facial Expression Recognition (FER) is used to analyse
individuals’ facial expressions, enabling the inference of emo-
tions such as happiness, sadness, anger and surprise. This abil-
ity to discern emotions has significant implications for improv-
ing human-machine interaction and finds diverse applications
in fields such as healthcare, social media, entertainment and
gaming. While many deep learning-based methods for facial
expression recognition have achieved commendable accuracy
when provided with complete facial information, research on
recognising facial expressions from occluded faces remains
limited. These occlusions can manifest in various forms, such
as glasses, hair, or hands, each causing varying degrees of loss
in facial information [1].

Cheng Jiang and Md Rakibul Hasan are co-first authors.

Amidst the COVID-19 pandemic, face masks have emerged
as essential and effective preventive measures. Compared to
other types of occlusions, face masks have a more pronounced
impact, rendering the facial features below the nose bridge
completely invisible. Consequently, differentiating emotions
such as fear and surprise, as well as sadness and disgust,
becomes more challenging, as these emotions primarily rely
on the regions surrounding the mouth. Consequently, facial ex-
pression recognition from masked faces remains a challenging
computer vision task.

To address this challenge, recent research has proposed
several approaches that are specifically designed to handle
the occlusions in images, such as Region Attention Net-
work (RAN) [2], Attention-CNN (ACNN) [3] and Occlusion-
Adaptive Deep Network (OADN) [4]. These approaches in-
corporate attention mechanisms to highlight relevant areas
in an image while downplaying irrelevant regions. To some
extent, these methods have improved the recognition accuracy
of FER from masked faces. However, it is important to note
that occlusion-aware is a broader concept compared to mask-
aware. In the context of occlusion-aware, accurately identi-
fying the occluded area is crucial for subsequent tasks, such
as generating precise attention maps. However, this sub-task
itself may be more challenging than anticipated, as accurately
delineating occlusion boundaries proves more difficult than
mere detection. Errors in this step can significantly impact the
overall accuracy of facial expression recognition. Conversely,
in the context of mask-aware, the occlusion area is confined to
the region around the mouth. Consequently, in the case of FER
with masked images, the model’s performance can be further
enhanced by effectively leveraging this additional information.

In this study, we propose a mask-aware FER pipeline, Mask-
TheFER, specifically designed to handle face masks in images.
We name our pipeline MaskTheFER because we first mask
normal images using the MaskTheFace algorithm proposed
by [5], and then we build our system to perform FER on the
generated dataset. The FER system consists of two branches:
a cropping branch based on facial landmarks and a CNN-
based classification branch. The cropping branch extracts a
small region from a masked image, preserving only the eyes,
eyebrows, forehead and upper nose bridge while discarding
the face mask, hair and background. This step can be accom-
plished by employing pre-trained face landmark detectors such
as Dlib library [6] or Multi-task Cascaded Convolutional
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Networks (MTCNN) [7]. As the datasets comprise images
taken from varying angles or featuring faces with different tilts,
the input images are initially aligned based on the positions
of visible landmarks to ensure consistent cropping.

The resulting cropped images are then fed into the classi-
fication branch for predicting facial expressions. This branch
is a modified version of the VGG architecture [8] known for
its deep structure and utilisation of small convolutional filter
kernels. To better accommodate the characteristics of small
and low-resolution input images, the hyperparameters of the
classification branch are fine-tuned.

The major contributions of this paper are summarised as
follows:

1) The generation of visually appealing masked versions of
widely used FER datasets, namely FER2013 [9] and CK+
[10]. Our generated MaskedFER2023 and MaskedCK+
datasets will be publicly available for benchmarking
mask-aware FER tasks.

2) The proposal and effectiveness validation of a cropping-
based image pre-processing method that selectively ex-
tracts key areas while discarding irrelevant regions.

3) The introduction of a variant of the VGG classifier, where
hyperparameters such as depth, filter number and learning
rate have been fine-tuned to optimise performance for the
task at hand.

4) Evaluation of the proposed method on the generated
MaskedFER2023 and MaskedCK+ datasets, showcasing
competitive performance as compared to state-of-the-art
methods on other variants of the FER2013 dataset masked
by different techniques.

5) A comprehensive investigation into the impact of face
masks on the recognition of the seven basic emotions –
Angry, Disgust, Fear, Happy, Neutral, Sad and Surprise
– categorised in the original FER2013 and CK+ datasets.

II. RELATED WORK

A. Facial Landmark Detection

Facial landmark detection plays a fundamental role in
various face analysis tasks by identifying specific facial points
such as the eyes, nose, and mouth. These landmarks find
extensive applications in face recognition, emotion analysis,
and other downstream tasks. In this paper, facial landmark
detection is pivotal for generating synthetic face masks and
cropping the eye regions.

One well-known facial landmark detection approach, in-
troduced by Kazemi and Sullivan [6], employs an ensemble
of regression trees and shape-indexed features to achieve
real-time landmark detection. The widely used 68 landmark
function in the Python Dlib library is based on this work.
Conversely, Zhang et al. [7] proposed a deep learning-based
method called Multi-task Cascaded Convolutional Networks
(MTCNN). MTCNN comprises three subnetworks: Proposal
Network (P-Net), Refinement Network (R-Net) and Output
Network (O-Net). By formulating face landmark detection as
a regression problem, MTCNN provides five key landmarks
for each detected face.

It is important to note that these landmark detection methods
were originally developed using datasets that did not incorpo-
rate face masks. However, empirical evidence by Dharanesh
and Rattani [11] demonstrates that these methods can still
yield relatively accurate results on masked images. This ro-
bustness makes face landmark detection applicable to various
occlusion-aware or mask-aware FER approaches, including the
approach presented in this paper.

B. Occlusion-Aware FER

Occlusion-aware FER approaches aim to address the chal-
lenge of recognising facial expressions in the presence of
occlusions. These methods typically adopt a sub-region-based
strategy, where the images are divided into multiple patches,
allowing the model to focus on non-occluded regions while
paying less attention to or disregarding the occluded patches.

One notable occlusion-aware FER approach is ACNN [3],
which is specifically designed to identify occluded patches on
the face and emphasise the most informative non-occluded
patches. ACNN consists of two branches: patch-based ACNN
(pACNN) and global-local-based ACNN (gACNN). The
pACNN branch focuses on local face patches, whereas the
gACNN branch integrates both local and global features.
Experimental results demonstrate that ACNN improves recog-
nition accuracy for both non-occluded and occluded facial
expressions.

Another occlusion-aware FER method, the Region Attention
Network (RAN), introduced by Wang et al. [2], employs
adaptive region attention to capture the importance of different
facial regions under occlusion and various poses. Additionally,
they propose a region-biased loss function that assigns higher
weights to the most crucial facial regions. Similarly, the
Occlusion-Adaptive Deep Network (OADN) proposed by Ding
et al. [4] incorporates an attention mechanism through an
attention map, which assigns different weights to different
regions. Furthermore, to enhance robustness, OADN divides
the feature maps into non-overlapping blocks, with each block
independently predicting the expression, resulting in more
distinctive features.

C. Mask-Aware FER

Mask-aware FER can be considered as a specific sub-
problem within the broader scope of occlusion-aware FER,
where the occlusion is primarily concentrated around the
mouth region. Castellano et al. [12] proposed a method,
referred to as CroppedFace, where the images are cropped to
retain only the regions proximate to the eyes. Subsequently, a
CNN model is employed to predict the facial expressions based
on these cropped faces. This approach bears similarity to the
method utilised in the present paper. However, the authors
of the aforementioned work lack comprehensive data pre-
processing and model optimisation, leaving room for further
improvements, which are addressed in this paper.

Another two-step method, BC-AD, was introduced by Yang
et al. [13]. In the first step, a binary classifier (BC) develops
attention heatmaps that delineate the masked and unmasked
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Fig. 1. Sample images from the original (a) FER2013 and (b) CK+ datasets.

areas by iterating over small patches within an image. In
the second step, these heatmaps are employed to re-weight
features using an attention-based deep model (AD).

Building upon BC-AD, Yang et al. [14] proposed an up-
dated version called Face-mask-aware Face Parsing and Vision
Transformer with a Cross-Attention Mechanism (FFP-VTC).
In this method, they fine-tuned a face segmentation model,
which offers improved accuracy in distinguishing between
masked and unmasked regions compared to a simple binary
classifier. Furthermore, the attention-based deep model (AD)
was replaced with a Vision Transformer, known for its more
optimal performance. Notably, their approach differs from
cropping-based methods in that it does not discard any oc-
cluded regions. Instead, each region is assigned a suitable
weight based on its importance.

III. MASKTHEFER PIPLEINE

A. Masked Datasets Generation

1) Original Datasets: The FER2013 dataset (Fig. 1a) is
a widely studied public dataset comprising 35,887 grayscale
images with dimensions of 48 × 48 pixels. The dataset en-
compasses various facial expressions, including 4,953 images
labelled as ‘Angry’, 547 images labelled as ‘Disgust’, 5,121
images labelled as ‘Fear’, 8,989 images labelled as ‘Happy’,
6,198 images labelled as ‘Neutral’, 6,077 images labelled as
‘Sad’, and 4,002 images labelled as ‘Surprise’. It is important
to note that the FER2013 dataset was originally collected from
the internet, resulting in variations in camera angles, lighting
conditions and potential inaccuracies in the annotations. A
survey conducted on the Kaggle forum reported that the aver-
age human accuracy on the FER2013 dataset is approximately
65± 5% [9].

The Extended Cohn-Kanade Dataset (CK+) (Fig. 1b) is
another frequently employed benchmark dataset for FER. It
comprises 593 video sequences, with each sequence containing
10 to 60 frames, capturing the facial changes of 123 subjects.
In CK+, the videos depict the transition of facial expressions
from a neutral state to specific target expressions. Among
these video sequences, 327 sequences from 118 subjects
are labelled with seven distinct expressions, namely Angry,
Disgust, Fear, Happy, Sad, Surprise and Contempt. Unlike
the FER2013 dataset, the CK+ dataset is collected under
controlled laboratory conditions, ensuring accurate annotations
and consistent layouts across the dataset.

Although CK+ dataset may not be sufficiently large to
accurately measure the capacity of models, our motivation
for choosing CK+ datasets is its suitability for evaluating
the impacts of face masks. To clarify, many state-of-the-art
deep learning methods such as [15], [16] have achieved close
to 100% accuracy on the original CK+ dataset. Their near-
perfect performance suggests that the original CK+ dataset
contains highly recognisable expressions with similar difficulty
levels for deep learning models. Thus, the accuracy of each
emotion on its masked version directly reflects the impact of
face masks.

2) Masked Datasets: To date, no existing masked FER
datasets have been made publicly available. Consequently, it
becomes necessary to generate masked versions of existing
normal FER datasets. To this end, we generate the masked
version of the FER2013 dataset by leveraging MaskTheFace
algorithm [5], similar to the study by Magherini et al. [17].
This algorithm leverages facial landmark detection, imple-
mented using the Dlib library, to determine the tilt of the
face and identify the key points for mask placement. With this
information, the algorithm synthesises a user-specified mask,
such as an N95 or surgical blue mask, on the original image
at an appropriate position and orientation.

Due to various challenges, such as low resolution, in-
complete faces and unusual angles in certain images of the
FER2013 dataset, masking them accurately becomes difficult.
We, therefore, introduced a manual threshold in the Mask-
TheFace algorithm. Images with a confidence level lower
than this threshold are considered challenging to mask and,
consequently, are discarded. This process accounts for the
smaller size of the generated dataset compared to its original.

Similarly, we mask the CK+ dataset using the same Mask-
TheFace algorithm. In the original CK+ dataset, which con-
sists of video frames, there can be a high correlation and
similarity between adjacent frames. To address this issue and
prevent significant overlap between the training and test sets,
a selection process was performed. Specifically, only one
frame capturing the peak of each emotion was chosen from
each video sequence. Additionally, the class ‘Contempt’ was
replaced with the class ‘Neutral’ to maintain consistency with
the masked version of the FER2013 dataset. For the ‘Neutral’
class, representative images were obtained by sampling a
single frame from the beginning of certain video sequences.

B. Cropping Branch

1) Motivation: As mentioned earlier, attention-based meth-
ods play a crucial role in mask-aware and occlusion-aware
FER techniques. These methods generate attention maps that
indicate the importance of different sub-regions in the images,
allowing the model to prioritise relevant areas while disregard-
ing irrelevant regions. However, obtaining accurate attention
maps can be challenging. Among different approaches, RAN
[2] utilises self-attention modulo and relation-attention mod-
ulo. It requires multiple crops of a single training image, re-
sulting in significant computational expense. Another method,
BC-AD [13], employs a binary classifier to identify masked



Fig. 2. Data pre-processing procedure.

and unmasked areas by iteratively ‘zeroing out’ square patches.
The patches that most influence the classifier’s prediction are
deemed important unmasked areas. Although effective, this
approach is not highly efficient. In FFP-VTC [14], the binary
classifier is replaced with a face parser, which can segment the
face into different regions, including those covered by masks.
However, incorporating a face parser necessitates retraining
and fine-tuning on large masked datasets, which requires
additional resources, training data and time.

The mask-aware approach is more specific than occlusion-
aware, as it focuses on the lower part of the face where the
occlusion typically occurs. Minaee et al. [18] and Gan et al.
[19] have shown that the regions near the eyes and mouth
are the most informative for FER, but they are occluded when
masks are worn. Based on this understanding, we propose that
cropping the regions near the eyes can serve as an effective and
efficient pre-processing method for FER from masked faces.
By excluding the masked regions, we can eliminate the impact
of irrelevant factors such as background area, mask colour and
shape variations and differences in mask-wearing styles while
still preserving crucial information.

2) Procedure: The entire data pre-processing procedure
(Fig. 2) can be summarised as the following four steps:
Step 1: Collecting Images from the original FER2013 and

CK+ datasets
Step 2: Generating MaskedFER2023 and MaskedCK+

datasets using MaskTheFace algorithm
Step 3: Horizontal alignment by the positions of eyes
Step 4: Cropping the region near the eyes so that only upper

facial features are preserved
Step 3 addresses the issue of inconsistent tilts of faces,

which is particularly evident in the FER2013 dataset. As
depicted in Fig. 2, a regular rectangular region may not be
suitable for selecting the region close to the eyes in some
images. To overcome this challenge, we employ the Python
Dlib library for face landmark detection. The face landmarks
provide crucial information for determining the angle between
the line connecting the two eyes and the horizontal line. Based
on this angle, we rotate the image to align it appropriately.
This process ensures that the selected region near the eyes is
consistently oriented, regardless of variations in face tilt across
the dataset.

In Step 4, the image is finally cropped to remove the
background and discard the region covered by the face mask.
The bounding box created by the Dlib face detection model

determines the top, left and right borders. To determine the
bottom boundary, the position of the nose is utilised, thereby
excluding the region covered by the face mask. The resulting
cropped region is subsequently re-scaled to a fixed size of
48× 96 to serve as input to the classifier.

3) Masked and Cropped Datasets – MaskedFER2023 &
MaskedCK+: The final masked and cropped versions of the
FER2013 and Ck+ datasets – hereby referred to as Masked-
FER2023 and MaskedCK+ datasets – contain 23,435 and
355 images, respectively. The distributions of emotions in the
MaskedFER2023 and MaskedCK+ datasets are reported in
Table I. We publish these generated datasets in Jiang et al.
[20].

We split the datasets into a training set and a test set in
the ratio of 85%/15% for the MaskedFER2023 dataset and
66.7%/33.3% for the MaskedCK+ dataset. The proportions
of seven expressions in the training and test sets are nearly
identical. Since MaskedCK+ contains only 355 images, a
larger ratio for the test set is used to ensure more stable results.

To enhance the model’s robustness and mitigate overfitting,
data augmentation strategies are applied to the training set.
However, in this study, it is important to ensure that the aug-
mentation parameters are reasonably small to avoid discarding
key features during the augmentation process, such as shifting
and zooming. The relevant augmentation parameters employed
in this paper are listed in Table II.

C. Classification Branch

1) Motivation: Utilising pre-trained CNN architectures as
feature extractors does not offer significant advantages and
may even yield inferior performance in the FER task at hand.
There are several reasons for this. Firstly, the FER2013 and
CK+ datasets used in this study consist of grayscale images
with only one channel, whereas most pre-trained networks
are trained on colour images with three channels. While it
is possible to create ‘fake’ colour images by duplicating the
grayscale channel, this process results in the loss of colour
information, thereby reducing the accuracy of the extracted
features.

Secondly, the datasets employed in this paper have a low
resolution of 48×48, and the resolution of the cropped images
prior to re-scaling may be even lower. Consequently, networks
with large convolutional kernels (greater than 3× 3) and deep
architectures may not be suitable for this task. The utilisation
of complex architectures with a high number of parameters on
small and unclear images can make the optimisation process
significantly more challenging.

To address these challenges, it is deemed appropriate to
adopt a lightweight CNN architecture for feature extraction
and train it from scratch on the generated datasets. This
approach allows for better adaptation to the specific charac-
teristics and constraints of the FER task at hand.

2) Network Architecture: We developed a CNN architec-
ture, which is a modified version of the VGG16/VGG19
architecture and inspired by [21]. Khaireddin and Chen [21]
reported state-of-the-art performance on the original FER2013



TABLE I
NUMBER OF IMAGES IN EMOTION CLASSES OF THE GENERATED MASKEDFER2023 AND MASKEDCK+ DATASETS.

Dataset Angry Disgust Fear Happy Neutral Sad Surprise

MaskedFER2023 3,048 418 3,104 6,510 4,347 3,287 2,721
MaskedCK+ 45 58 25 68 50 27 82

Fig. 3. The architecture of the proposed CNN model. It consists of four basic convolutional blocks, where each block contains two consecutive convolutional
layers with the same number of filters, one batch normalisation layer and a 2× 2 maximum pooling layer. The number of filters in each block progressively
increases, starting from 32 in the first block and doubling in each subsequent block (64, 128, and 256).

TABLE II
DATA AUGMENTATION PARAMETERS.

Method Value

Horizontal flip True
Rotation ±15°
Zoom ±10%
Width shift ±8%
Height shift ±8%
Shear ±10%

dataset at the time of publication. To keep the network shallow
and suitable for the small and unclear cropped images, we have
reduced the number of filters and the depth of the architecture
(two instead of three convolutional layers in the 3rd and 4th

blocks) compared to the original VGG architectures.
All convolutional and linear layers (except the last linear

layer) are activated by the ReLU activation function. The
convolutional blocks are followed by two linear layers of
length 4,096, which assign weights to the extracted features.
To mitigate overfitting, a dropout rate of 0.30 is applied
to these two linear layers. The final layer of length seven,
activated by SoftMax, corresponds to the predictions of seven
facial expressions.

Other implementation details and important hyperparame-
ters are listed in Table III. An initial learning rate of 0.01 is
dynamically reduced based on performance on the validation
set (ReduceLROnPlateau). Specifically, the learning rate
is reduced by a factor of 0.75 if the accuracy of the model
does not improve after five consecutive epochs. This dynamic
adjustment helps the learning rate to be high initially, enabling

TABLE III
IMPLEMENTATION DETAILS.

Hyperparameter Value

Optimiser SGD with Nesterov
Initial learning rate 0.01
Learning rate scheduler ReduceLROnPlateau
Batch size 64 (MaskedFER2023) / 16 (MaskedCK+)
Loss function CrossEntropy

exploration of different areas in the parameter space, and
then gradually decreases to allow for convergence to a good
solution.

We implement the whole system in Python using the Ten-
sorFlow framework on a machine having an NVIDIA GeForce
RTX 3070ti GPU.

IV. RESULTS AND DISCUSSION

A. Performance on MaskedFER2023

1) Overall Accuracy: The proposed method’s performance
on the test set is compared with three occlusion-aware methods
(RAN, ACNN and OADN) and three mask-aware methods
(CroppedFace, BC-AD and FFP-VTC) (Table IV). The per-
formance of VGG19, implemented in [14], is also compared.

Our approach achieves an accuracy of 0.6189, while FFP-
VTC achieves an accuracy of 0.6653 (Table IV). It is important
to note that the masked versions of the FER2013 datasets
used in these studies vary due to the absence of a publicly
available masked version of the FER2013 dataset. Different
research groups employed different techniques to mask the



TABLE IV
ACCURACY COMPARISON ON THE MASKED VERSIONS OF THE FER2013
DATASET, GENERATED USING DIFFERENT FACE-MASKING ALGORITHMS.

Reference Face-Masking Algorithm Method Accuracy

[14] FMA-3D from FaceX-Zoo [22] VGG19 0.5148
RAN 0.5378
ACNN 0.5721
OADN 0.5911
FFP-VTC 0.6653

CroppedFace [12] CNN 0.5428

AWFM [23] BC-AD 0.6179

Proposed MaskTheFace [5] MaskTheFER 0.6189

faces. To ensure future research comparability, we make the
MaskedFER2023 dataset publicly available.

Our proposed method slightly outperforms the BC-AD
approach, which achieves an accuracy of 0.6179. The BC-AD
method employs binary attention maps that resemble cropping.
This similarity might explain the close performance between
the BC-AD approach and our proposed method.

CroppedFace, a cropping-based method similar to our pro-
posed approach, utilises cropped regions near the eyes as
input to the CNN model. Our proposed method significantly
outperforms CroppedFace (0.6189 vs 0.5428). We attribute this
performance gap to two main reasons. Firstly, our proposed
method incorporates additional measures in the cropping pro-
cess, such as horizontal alignment of eye positions to ensure
consistency between cropped images (see Fig. 2). Without this
alignment, many cropped images appear visually unappealing
due to varying tilts of the faces. This alignment technique
improves our overall accuracy by 1.5%–2%. Secondly, the
backbone architecture of CroppedFace is the classic VGG16,
which may not be the most suitable for this specific task, as
discussed earlier. In our paper, we carefully modified the width
and depth of our backbone to enhance its adaptability to the
input. Additionally, we conducted thorough hyper-parameter
tuning (e.g., optimiser, learning rate, batch size) to optimise
the overall performance of our model.

2) Evaluation of Different Emotion Classes: We also in-
vestigated the performance of our method on the seven emo-
tion classes from the MaskedFER2023 dataset, as shown in
Fig. 4. We compared performances with other state-of-the-art
methods from two different perspectives (Table V). Firstly, the
differences among mask-aware methods on different masked
versions of the FER2013 datasets are studied to demonstrate
the capacity of our model. Secondly, the differences in per-
formance with the original FER2013 dataset are studied to
understand the impacts of face masks.

The proposed method outperforms CroppedFace for all
emotions except ‘Fear’. It achieved significantly higher ac-
curacy for emotions such as ‘Disgust’ (0.68 vs 0), ‘Happy’
(0.76 vs 0.58) and ‘Neutral’ (0.60 vs 0.49). It is noticeable
that the CroppedFace misclassified all ‘Disgust’ images. This
result could potentially be attributed to the imbalanced data
distribution in FER2013. As mentioned earlier, there are only

Fig. 4. Confusion matrix on MaskedFER2023 using our proposed method.

547 ‘disgust’ images out of a total of 35,887 images in
the FER2013 dataset. Compared to FFP-VTC, the proposed
method achieves higher accuracy for ‘Disgust’ (0.68 vs 0.34),
‘Happy’ (0.76 vs 0.72) and ‘Surprise’ (0.76 vs 0.70).

To analyse the impacts of face masks on the recognition of
individual emotion classes, Khaireddin and Chen [21]’s im-
plementation is chosen as a benchmark on FER2013 because
their model shares a similar backbone with ours (both are
VGG based). Their model achieved a state-of-the-art accuracy
of 73.28% on the original FER2013 when it was published. It
is clear from Table V that ‘Happy’ and ‘Surprise’ are the two
expressions that are the easiest to classify on both the original
and masked datasets. Although the accuracy of these two
expressions also decreases by about 10% after being masked,
they are still significantly higher than other emotions on both
two datasets. It is important to note that a drop of about 10%
is not particularly obvious because they have a large baseline
accuracy (greater than 85%). Interestingly, the accuracy of
‘Disgust’ on MaskedFER2023 is exceptionally higher than that
on the original dataset. This may be attributed to the limited
sample size for the ‘Disgust’ emotion in the FER2013 dataset.

In contrast, it is obvious that ‘Sad’ is the expression that
is the most sensitive to face masks. Its accuracy drops from
0.65 to 0.43. This is probably because the loss of the lower
facial features near the mouth makes it difficult for the model
to distinguish it from ‘Neutral’. From the confusion matrix
in Fig. 4, 23% of the ‘Sad’ samples are misclassified as
‘Neutral’. And this is also the most frequent misclassification
on MaskedFER2023 for the proposed model. Similarly, the
accuracy of ‘Angry’ also suffers a significant drop of more
than 10% on the MaskedFER2023 dataset, from 0.66 to 0.54.

This result is in line with previous studies: [1] proved that
‘Disgust’, ‘Sad’ and ‘Angry’ are the three expressions most
sensitive to masking in FER problems by experimenting on
a sample of 790 participants. Furthermore, Magherini et al.
[17] found ‘Sad’ to be the only misclassified emotion when



TABLE V
ACCURACY OF EMOTION CLASSES ON DIFFERENT MASKED VERSIONS OF THE FER2013 AND THE ORIGINAL FER2013 DATASETS.

Dataset Models Angry Disgust Fear Happy Neutral Sad Surprise

Masked versions of FER2013 CroppedFace [12] 0.46 0 0.59 0.58 0.49 0.41 0.68
FFP-VTC [14] 0.66 0.34 0.66 0.72 0.67 0.59 0.70
MaskTheFER (Proposed) 0.54 0.68 0.50 0.76 0.60 0.43 0.76

FER2013 VGGNet [21] 0.66 0.64 0.57 0.89 0.71 0.65 0.85

TABLE VI
ACCURACY COMPARISON ON THE MASKED VERSIONS OF THE CK+

DATASET.

Reference Method Accuracy

[14] VGG19 0.4712
RAN 0.5463
ACNN 0.5401
OADN 0.5362
CroppedFace 0.5079
BC-AD 0.5713
FFP-VTC 0.6108

Proposed MaskTheFER 0.6356

conducting cross-validation tests on the AffectNet dataset [24].

B. Performance on MaskedCK+

1) Overall Accuracy: The proposed model achieved an
overall accuracy of 0.6356 on the MaskedCK+ dataset, which
outperforms the state-of-the-art results on other masked ver-
sions of the CK+ dataset (Table VI).

Compared to the performance on the MaskedFER2023
dataset, our method demonstrates only a modest improvement
of 1.67% in overall accuracy on MaskedCK+, despite CK+
containing more accurate annotations and less noise than
FER2013. In our analysis, we identify two potential reasons
for this outcome. Firstly, the limited size of the CK+ dataset
presents challenges during the training process, which can
impact the model’s ability to generalise effectively. Secondly,
the cropping branch in the model effectively eliminates the
inconsistency of image style, specifically the variations in face
tilt and position in the FER2013 dataset, which improved the
alignment and uniformity of images. On the other hand, CK+
does not experience the same benefit since the majority of its
images are already consistent from the beginning.

2) Evaluation of Different Emotion Classes: The recog-
nition accuracy of each expression is shown in Fig. 5. On
this small test set, the model correctly classified all ‘Neutral’
images. The accuracy for the ‘Surprise’ image is 0.89, which
ranks second. It is followed by ‘Happy’ with an accuracy of
0.70. It can be seen that the easiest emotions to classify in the
MaskedCK+ dataset align with the MaskedFER2023 datasets.
Both ‘Happy’ and ‘Surprise’ maintain an accuracy of over
70% on these two datasets.

In contrast, ‘Fear’, ‘Sad’ and ‘Angry’ are the most difficult
expressions to classify, which is also consistent with the
results from the MaskedFER2023 dataset. In our opinion, this
is probably because the most distinctive features for these

Fig. 5. Confusion matrix on MaskedCK+ using our proposed method.

Fig. 6. Some incorrect predictions by our model. In the top row, ‘Sad’ is
misclassified as ‘Fear’, while in the second row, ‘Angry’ is misclassi fied
as ‘Happy’. The first, second and third columns are the original images, the
masked images and the images after pre-processing, respectively.

emotions are in the lower part of the face near the mouth,
which is not visible when a mask is worn.

It is worthwhile to note that a higher accuracy achieved by
any certain emotion might be attributed to the fact that this
emotion is inherently easier to classify (e.g., fewer outliers and
less noise for this class in the original dataset) rather than a
relatively minor impact from face masks.

C. Misclassification Caused By Face Mask

Fig. 6 shows two examples of how face masks lead to
misclassification. These two examples indicate that the ab-
sence of lower facial features can make some expressions



unrecognisable. It further explains why the overall recognition
accuracy on CK+ dropped from almost 100% to no more than
70% after the images were masked.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a mask-aware method to specif-
ically handle occlusion in emotion recognition tasks from
masked faces. The proposed method consists of a cropping-
based image pre-processing branch and a CNN-based clas-
sification branch. The pre-processing branch uses pre-trained
face landmark detectors to crop the image so that only the
region near the eyes, which is the most informative area in
masked images, is preserved. The CNN classifier is adapted
from the classical VGG architecture with its depth, width and
other hyperparameters fine-tuned for the task at hand.

Two masked datasets – MaskedFER2023 and MaskedCK+,
with seven basic emotions – are generated and made available
from their original version to evaluate the model and under-
stand the impact of masks on FER tasks. Experimental results
indicate that our proposed MaskTheFER pipeline achieves
competitive performance on different masked versions of
FER2013 and CK+ datasets compared to other state-of-the-
art methods. Furthermore, we show that face masks make the
recognition of some expressions, especially ‘Sad’, much more
difficult, according to the statistics for each of the emotions.
While some expressions such as ‘Surprise’ and ‘Happy’ are
not sensitive, maintaining a high recognition accuracy with or
without the presence of masks.

The quality of the generated masked images can be eval-
uated, which we leave for future work. In addition, incorpo-
rating our system with a mask-detection model, such as [25],
would be another interesting avenue for future research. This
integration would allow the system to be applied in real-world
scenarios where both masked and unmasked faces are present.
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