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Abstract—One of the key challenges of digital signal processing
is to estimate sinusoidal components of an unknown signal.
Researchers and engineers have been adopting various methods
to analyze noisy signals and extract essential features of a given
signal. Singular spectrum analysis (SSA) has been a popular and
effective tool for extracting sinusoidal components of an unknown
noisy signal. The process of singular spectrum analysis includes
embedding time series into a Hankel matrix. The eigenvalue
distribution of the Hankel matrix exhibits significant properties
that can be used to estimate an unknown signal’s rhythmic
components and frequency response. This paper proposes a
method that utilizes the Hankel matrix’s eigenvalue distribution
to estimate sinusoidal components from the frequency spectrum
of a noisy signal. Firstly, an autoregressive (AR) model has been
utilized for simulating time series employed to observe eigenvalue
distributions and frequency spectrum. Nevertheless, the approach
has been tested on real-life speech data to prove the applicability
of the proposed mechanism on spectral estimation. Overall,
results on both simulated and real data confirm the acceptability
of the proposed method. This study suggests that eigenvalue
distribution can be a helpful tool for estimating the frequency
response of an unknown time series. Since the autoregressive
model can be used to model various real-life data analyses,
this study on eigenvalue distribution and frequency spectrum
can be utilized in those real-life data. This approach will help
estimate frequency response and identify rhythmic components
of an unknown time series based on eigenvalue distribution.

Index Terms—Hankel matrix, Eigenvalue distribution, Singu-
lar spectrum analysis, Autoregressive model, Frequency response

I. INTRODUCTION

In this modern science and technology era, people are
becoming increasingly dependent on electrical and electronic
instruments. Nowadays, people are frequently using devices
that can manipulate the digital signals received from various
sensors. These digital signals often contain valuable infor-
mation that can be used to serve various purposes. Most
of these signals have a high tendency to get polluted by
multiple sources of noise interference. This is where digital
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signal processing plays a significant role in extracting useful
information from noisy data by minimizing the noise com-
ponents. Nowadays, the task of digital signal processing has
become more accessible to implement due to the availability of
complex computational devices [1]. In the process of removing
noise from a digital signal, singular spectrum analysis (SSA)
can be used as a reliable tool [2]. Various fields of science are
adopting this novel technique for numerous tasks such as time
series analysis, multivariate statistics, signal processing, and
similar applications [3]. The SSA is a non-parametric method
of time series analysis that does not require any statistical
assumption to analyze the data from noise components [3].
The first step of the SSA technique includes embedding
the signal’s time series into a trajectory matrix called Hankel
Matrix [4]. Eigenvalue distribution of the Hankel matrix of a
particular time series can be used to analyze the property of a
signal. For instance, the distribution of the eigenvalues of the
embedded Hankel matrix of a time series exhibits a specific
pattern for a white noise process that can be utilized to filter
out noise components of a signal [5]. Statistical parameters
such as skewness and kurtosis can help select the optimum
number of eigenvalues. It can be utilized in separating noise
components from EEG signals [6]. The distribution of eigen-
values can also help in separating noise components from
chaos [7]. The harmonic components of a signal produce a
pair of singular values that are very close to each other [4].
It can help visualize through plots. Analyzing the different
patterns and properties of eigenvalues can help assume the
spectral property of a signal and separate the noisy elements.
The eigenvalue distribution can be used to extract the
periodic components of different types of signals, which can
then be reconstructed into signals with different rhythms.
For example, extraction of rhythmic components of EEG can
be done and then be reconstructed to signals with multiple
rhythmic components with the aid of eigenvalue distribution
[8]. It is theoretically significant to develop an algorithm



based on the eigenvalue distribution to analyze the frequency
spectrum and rhythmic elements of a signal, which can be
employed in rhythm extraction of various unknown signals.
Researchers have proposed several methods to denoise signals
based on SSA method [9]-[12]. In SSA, the eigenvalues of the
Hankel matrix contain essential information about the signal.
In general cases, the eigenvalue distribution is observed to
choose the optimum number of eigenvalues along with the
eigenvectors in order to reconstruct the given signal avoiding
noise components. This indicates that the noise components
and the signal components can be identified with the help of
eigenvalues and how it is distributed. It seems that the eigen-
value distribution can help estimate the sinusoidal components
of a given signal. Therefore, it is possible to develop a method
based on eigenvalue distribution that helps us get an idea about
the system of an unknown signal.

This article proposes a method to estimate the sinusoidal
components of a signal based on the eigenvalue distribution
of the Hankel matrix. In practice, there can be many unknown
signals. The proposed method can be utilized to have an
estimation of the sinusoidal components of the unknown
signal. In this article, the eigenvalue distribution of a sim-
ulated time series is observed, and its frequency spectrum
is also shown. In addition, the dispersion of eigenvalues in
the distribution and its relation to its corresponding frequency
spectrum is also discussed. Furthermore, the proposed method
has been applied to real-life speech data where the eigenvalue
distribution and frequency spectrum of five speech sounds have
been investigated. These properties of eigenvalue distribution
and frequency spectrum can be helpful in the extraction of
periodic components of a signal, which can be used in real-
life data analysis.

II. MATHEMATICAL FORMULATION OF SSA-BASED
RHYTHM ESTIMATION

The method of evaluating rhythms is discussed in this
section. In particular, the process of SSA is briefly introduced,
followed by a discussion on the dispersions of the eigenvalues.
The process is used for decomposing a particular time series
into a sum of trends, harmonics, and noise components [4].
This process aims to separate the noise components of the
signal to extract authentic information provided through the
signal.

Suppose a time series of length N be x = (z1, 22, -+ ,ZN)-
As shown in (1), the time series is embedded into a trajectory
matrix X with a dimension of window length, L by K having
K=N-L+1

Z1 €2 €3 TK
T2 3 T4 e TK+1

X=. . . . ) (1)
T TrL4+1 TL42 TN

The matrix X is called the Hankel matrix, where all the anti-
diagonal elements are equal. The method of singular value
decomposition (SVD) is then performed to this Hankel Matrix.
The first step of SVD is to construct the covariance matrix,

C = XXT. The covariance matrix of size L by L is then
used to calculate the eigenvalues for further analysis. The
eigenvalues are calculated using (2).

C — | =0 )

The calculated eigenvalues are denoted using the symbol
Ai, where (i = 1,2,3,---, L). The eigenvalues are sorted in
descending order (A\y > Ao > --- A > --- > 0). The corre-
sponding eigenvectors are Uy, Us, --- ,Ur. After performing
SVD, the trajectory matrix X can be written according to (3).

X:X1+X2+X3+"'+Xd (3)

Here, d is the rank of matrix X. If V; = XTU,-/\//TZ-, then
according to (3), X; = v/A;U; VT can be written. After that,
grouping is performed using several criteria, which is then
followed by diagonal averaging to reconstruct the time series
to mitigate the noise component.

Reconstructed components X; and X5 will form sinusoidal
rhythm if the eigenvalues are equal or close. In this article,
the deviations of the eigenvalue pairs and the sinusoidal
components are investigated. The Fourier transform tells about
the frequency spectrum of the whole signal, including noise-
spectrum, yet it does not tell us about the system-generated
sinusoidal component. The eigenvalue distribution will help
identify the system-induced important sinusoidal component
within the signal. In order to get an estimation of the sinusoidal
components of a given signal, the first step is to calculate the
eigenvalues of the Hankel matrix. After that, the eigenvalues
need to be plotted so that the distribution of eigenvalues can
be visualized. In the distribution of eigenvalues, the harmonic
components produce a pair of eigenvalues that remains very
close to each other [4]. Therefore, the number of sinusoidal
components can be estimated by observing the number of pairs
in the eigenvalue distribution. Each pair of close eigenvalues
is responsible for one sinusoidal component in the signal. The
magnitude of the pair of eigenvalues depends on the strength
of the sinusoidal component.

III. COMPUTER GENERATED SIGNALS

In this paper, an autoregressive model is used for signal
generation. The eigenvalue distribution of that time series is
observed and then compared with its frequency spectrum. An
autoregressive model can be used to model different types of
signals along with EEG signal [13], [14] and financial time
series [15]. The second-order autoregressive model (AR(2)) is
used to generate time series for simulation purposes, for which
the equation is given in (4).

Xe =01 Xpo1 + 02Xy o+ € 4

where, ¢ and ¢- represent the AR(2) model parameters, and
€; represents input random noise parameter. In the simulation,
512 time-samples are generated as per the AR(2) model given
by (4). One of the generated time series is depicted in Fig. 1.

In the simulation, input noise variance is kept constant
at 0.1, and the other parameters ¢; and ¢, are varied. For
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Fig. 1. Sample time series simulated from AR(2) model.

different values of ¢; and ¢, the corresponding eigenvalue
distributions and frequency spectrums are observed.

IV. IMPLEMENTATION OF THE PROPOSED METHOD
A. Eigenvalue Distribution

The generated time series is embedded into a Hankel matrix
with a window length of L = 180. After that, the covariance
matrix is obtained by multiplying the Hankel matrix with its
transpose matrix. This covariance matrix leads towards the
calculation of the eigenvalues. For different values of ¢; and
¢- for the time series, the corresponding eigenvalues are also
calculated. In Fig. 2, the first ten eigenvalues of the Hankel
matrix are plotted for multiple values of the AR(2) model
parameters ¢1 and ¢s.

In Fig. 2a, it is seen that as the value of ¢4 gets closer to -1,
the first four eigenvalues tend to have more and more disper-
sion from the last eigenvalues. Especially, the first two eigen-
values tend to dominate over the whole distribution concerning
their amplitude. It is also observed from the distribution that
the first two and second two eigenvalues are very close to each
other. This property of making close pairs is seen for all the
cases in Fig. 2. It makes an indication that the time series
contains harmonic components [4]. It is observed that for
comparatively smaller AR(2) parameter values, the amplitude
of the first two eigenvalues gets lower, and their dispersion
from the other eigenvalues also gets lower. This particular
property is seen in all subfigures of Fig. 2. In Figs. 2a and 2b,
the dispersion of the first two eigenvalues are pretty similar,
and the third and fourth eigenvalue also seems to have a
decent amplitude compared to other eigenvalues. In Figs. 2¢c
and 2d, the first two eigenvalues possess quite a similar sort
of dominating characteristics in the distribution; on the other
hand, the third and fourth eigenvalues get lower. Furthermore,
the dispersions of those third and fourth eigenvalues from the
first two get higher and get closer to the last eigenvalues.

Here it is also observed in Fig. 2 that the last eigenvalues
tend to get closer to zero regardless of the parameter values of
the AR(2) model time series. Additionally, the last eigenvalues
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Fig. 2. Eigenvalue distribution for (a) ¢1 = 0.25, (b) ¢1 = 0.6, (¢c) ¢1 =
0.8, and (d) ¢1 = 0.95 with multiple values of ¢2.

exhibit closer to zero in the whole distribution of the Hankel
matrix’s eigenvalues. In general cases of the SSA method,
the eigenvalues with higher and similar values are preferred
for grouping and reconstruction. Researchers have proposed
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several ways of selecting the optimum number of eigenvalues
for some specific types of time series [4].

B. Frequency Spectrum and Comparison With FEigenvalue
Distribution
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Fig. 3. Frequency spectrum for (a) ¢1 = 0.25, (b) ¢1 = 0.6, (¢) ¢1 = 0.8,
and (d) ¢1 = 0.95 with multiple values of ¢2.

The frequency spectrum of the simulated time series is
plotted in Fig. 3. The frequency spectrum is also observed
for multiple values of ¢; and ¢5. In Fig. 3a, it is seen that
the spectrum tends to have stronger peaks as the value of ¢
gets closer to —1. It is also noticed from the plot that the
most dominant peak of the frequency has the same parameter
value for which the eigenvalue distribution is most dominant in
the eigenvalue distribution plot shown in Fig. 2a. In Fig. 3a,
the value of ¢ is varied keeping ¢; fixed at 0.25. In that
plot, the frequency spectrum exhibits the strongest peak for
@2 = —0.975, and as the absolute value of ¢ gets lower and
closer to 0, the peak gets lower in that similar order. In the
eigenvalue distribution plot shown in Fig. 2a, the pair of the
first two eigenvalues get the highest value compared to others
when ¢ = —0.975, and as the absolute value of ¢o gets
closer to zero, the values of these first two eigenvalues also
get lower in the same order. In Fig. 3b, the frequency spectrum
is similarly plotted for several values of ¢ where ¢; is kept
constant at 0.6. Here in this frequency spectrum, the peaks of
the frequency response get weaker than that of Fig. 3a. Apart
from that, the strength of frequency response peak shows a
similar sort of correlation with the dominance property of
the first two eigenvalues shown in Fig. 2b. This particular
correlation of frequency response with the dominance of the
first two eigenvalues is also seen in between Figs. 3c, 3d
and Figs. 2c, 2d. Therefore, after observing all these plots
in Fig. 3 and Fig. 2, it is remarked that frequency response
with stronger peaks tends to show dominating value for the
first two eigenvalues in the eigenvalue distribution.

The time series having a comparatively weaker frequency
response tends to get lower values for the first two eigenvalues
in the whole eigenvalue distribution. As an example, the time
series generated from AR(2) model with ¢ = —0.1 has
got a weaker frequency response in the frequency spectrum
as shown in Fig. 3. The first two eigenvalues of the same
time series got lower values with lower dominance over the
distribution of the eigenvalues. Therefore, it is observed that
the time series in which the first few eigenvalues tend to
show dominance over the eigenvalue distribution have stronger
peaks in the frequency spectrum. This particular property of
eigenvalues can assist in estimating the frequency response of
a given time series. In Figs. 3a and 3b, it seems that some
signals tend to have two sinusoidal peaks in the frequency
response. In Figs. 2a and 2b, it is also observed that the
pair of third and fourth eigenvalues seems to have a decent
magnitude compared to others, which is why there can be
seen two peaks for some signals in Figs. 3a and 3b. The
eigenvalue distribution of the Hankel matrix time series can
help in estimating whether a signal has strong sinusoidal
components or not. In practice, the property of a signal is
usually unknown. The Hankel matrix’s eigenvalue distribution
can be a helpful tool to estimate the frequency response, which
can help understand the signal.
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V. INVESTIGATION INTO SPEECH SIGNALS

To test the proposed method on real-life signals, five sample
speech signals are utilized from the dataset presented in [16].
These sounds are Bengali language’s first vowel equivalent to
the /o/ sound in English, one of which is depicted in Fig. 4.

Fig. 4. Waveshape of a real-life signal (the first vowel sound of Bengali
language).

Since the sounds were recorded in a conventional smart-
phone without any noise suppressing environment, some noise
was inherently embedded within the signals. Both eigenvalue
distribution and frequency spectrum for all five sample sounds
have been produced, and they are presented in Fig. 5.

Now it is time to correlate the eigenvalue pairs with the
number of the frequency components. However, since there
are noises within the signals, some eigenvalue pairs having
smaller values correspond to those noises. Hence, the question
arises—how many eigenvalue pairs to consider, and how many
frequency peaks to take into account as actual components
rather than noise? To address this issue, The following empir-
ical rules are utilized:

i. From the frequency spectrum, identify the minimum con-

siderable magnitude, M.

ii. Identify the maximum magnitude (M) in the spec-
trum.

iii. Calculate the ratio, r = (Min /Mm(m)Q. Here, squaring
is performed to consider energy since absolute value was
considered while plotting the frequency spectrum.

iv. Count the number of frequency peaks (N¢.q) between
Mmin and Mmaw~

v. From the eigenvalue distribution, find the peak of the
largest eigenvalue pairs, and take the average of these two
eigenvalues, F, 4.

vi. Consider the minimum threshold to count eigenvalue pairs
according to Fpuin =7 X Epaz.

vii. Count the number of eigenvalue pairs (Nejger,) between
Epin and E,,, along the eigenvalue axis.

The above technique helps select eigenvalue pairs according
to the energy ratio of the maximum peak to the considerable
minimum frequency peak. Here the maximum and minimum
frequency peak denotes the magnitudes of frequency in the

spectrum plot, and, of course, it does not indicate the fre-
quency value itself. The rules impose that the eigenvalue
ratio Epin/Fmae €quals to the frequency spectrum ratio r.
According to the proposed approach, the number of spectral
peaks (Nyfreq) and the number of eigenvalue pairs (Nejgen)
should be equal to each other. The above rules are applied to
all five samples, and the results are tabulated in Table 1.

In the frequency spectrum of Signal 1 shown in Fig. 5a, the
lowest magnitude considered as an original signal component
is 253.1. All other frequencies having magnitude below this
level are considered as noise/unwanted signal components. The
highest peak is 867.4, and thus the squared ratio becomes
0.0851. Counting the number of frequency peaks between
the magnitude of 253.1 and 867.4 results in six peaks. From
the eigenvalue spectrum of Signal 1 shown in Fig. 5f, the
average of the largest eigenvalue is 14.7677. Multiplying with
the spectrum ratio of 0.0851, the lower threshold to count
eigenvalue pairs becomes 1.2574. Accordingly, the number
of eigenvalue pairs between 1.2574 and 14.7677 is counted.
As expected, there are six eigenvalue pairs within this range,
which is exactly the same as the number of the frequency
peaks.

TABLE I
TEST ON FIVE REAL-LIFE SIGNALS. IT INDICATES THAT THE NUMBER OF
EIGENVALUE PAIRS REFLECTS THE NUMBER OF FREQUENCY PEAKS FOR
ALL FIVE SAMPLES.

Signal My in Mmaz T Nfreq Ofreq Emaxz Emin Neigen Teigen

1 253.1 867.4 0.0851 6 229.88 14.7677 1.2574 6 5.0120
2 121.5  281.7 0.1860 6 60.94 1.1380 0.2117 6 0.3156
3 2955 1068 0.0766 3 386.25 21.8200 1.6704 3 9.3461
4 1812 4131 0.1924 3 117.25 2.7291 0.5251 3 0.9672
5 99.71 2594 0.1478 8 77.09 2.1826 0.3225 8 0.6997

M pnin: Minimum considerable magnitude in the frequency spectrum

M az: Maximum magnitude in the frequency spectrum

r= (Mmm/MmM)Q: Squared spectrum ratio

Nfreq: Counted number of frequency peaks within the range

0 freq: Standard deviation of the magnitudes of the frequency peaks
Ermaz: Average of the two largest eigenvalues

Erin =7 X Emaqe: Minimum threshold to count eigenvalue pairs
Neigen: Counted number of eigenvalue pairs within the calculated range
Oeigen: Standard deviation of the averages of each eigenvalue pairs

Other samples of the table also follow the same pattern—the
number of frequency peaks and the number of eigenvalue pairs
are equal to each other. The standard deviation for both the
magnitude of the considered frequency peaks (0 f,cq) and the
eigenvalue pairs (og;gen) have been calculated. The average
for each pair has been calculated, and then the standard devia-
tion has been obtained among these averages. It is worthwhile
to note that the correlation coefficient between these two
standard deviations (0 fyeq, aeigen) is 0.9951, which means
they are strongly correlated. Therefore, the distribution of the
considered frequency peaks and the eigenvalue distribution are
strongly linked. The higher eigenvalue pairs stand for higher
magnitudes, and similarly, the lower eigenvalue pairs stand for
the lower magnitudes in the frequency spectrum. This analysis
on real-life signals complies with the conclusions made on
simulated time-series signals (see Section IV-B). Therefore,
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Fig. 5. Eigenvalue distribution and frequency spectrum of all five speech sounds.

the frequency component can be estimated from the eigenvalue
distribution, and they are strongly correlated.

VI. CONCLUSION

This article inspects frequency spectrum and eigenvalue
distribution of a Hankel matrix for both computer-generated
and five real-life speech signals. Besides, dispersions of eigen-
values for the computer-generated signal have been examined
and observed its’ effect on the frequency spectrum. The results
confirm that frequency response with stronger peaks tends to
show higher domination of the first pair of eigenvalues in
eigenvalue distribution. This property indicates that a time-
series system with stronger sinusoidal components tends to
show an eigenvalue distribution where the first few eigen-
value pairs have dominating values compared to other ones.
Accordingly, this particular property can be a handy tool
to identify whether a signal has sinusoidal components or
not. Investigation on speech signals verifies that the proposed
method is equally applicable for real-life data analysis. It
has been further observed that the standard deviations of
considered eigenvalues and frequency peaks’ magnitude in
the frequency spectrum are highly correlated to each other.
This indicates that the eigenvalue distribution of a signal is
strongly linked with the frequency spectrum. This particular
property can be a helpful tool in identifying the system of
an unknown signal. Particularly, detection of communication
channels, estimation of frequency components in EEG, EMG,
ECG, speech signals, and others can be done based on the
eigenvalue distribution. Therefore, this particular property can
be applied to noisy real-life data to estimate an unknown
signal’s rthythmic components and frequency response.
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