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ABSTRACT
Human social interactions involve intricate social signals that
artificial intelligence and machine learning models aim to
decipher, particularly in the context of artificial mediators
that can enhance human interactions across domains like ed-
ucation and healthcare. Engagement, a key aspect of these
interactions, relies heavily on multimodal information like
facial expressions, voice and posture. Recently, many deep
learning methods have been deployed in engagement estima-
tion. Still, they often focus on unimodality or bimodality,
leading to the results lacking robustness and adaptability
due to factors like noise and varying individual responses.
To address this challenge, we introduce a novel modality
fusion framework named Triplet Concatenated-Attentional
Net (TCA-Net). This framework takes three distinct types
of data modality (video, audio and Kinect) as inputs and de-
livers a prediction score as output. Within this network, a
specially designed concatenated-attention fusion mechanism
serves the purpose of modality fusion and preserves the intra-
modal features. Experimental results validate the efficiency
of our TCA-Net in enhancing the accuracy and reliability of
engagement estimation across diverse scenarios, with a test
set Concordance Correlation Coefficient (CCC) of 0.75. We
release our code at https://github.com/Daming-W/
Multimodal_Engagement_Estimation.

Index Terms— Engagement estimation, attention net-
work, multimodal fusion, human interaction, deep learning

1. INTRODUCTION

Engagement is the process through which multiple partic-
ipants initiate, sustain and end their perceived connection.
The capacity of artificial mediators to perceive and estimate
users’ engagement is vital for facilitating prompt, lifelike and
emotion-aware interactions with users, making them compan-
ions for educational and therapeutic purposes [3]. Estimation
of user engagement enables systems to achieve real-time in-
tervention and interaction [4]. Since it is a multidimensional
concept, the definition, annotation and automated prediction
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Fig. 1. Top: Previous unimodal engagement estimation meth-
ods [1, 2], mainly adopting the facial feature extracted from
captured video clips. Bottom: Proposed end-to-end multi-
modal engagement estimation method which allows inputting
and fusing multiple modality features and computing corre-
sponding engagement scores.

are focal points of research. Traditional methods have used
nonverbal engagement cues, including facial expression, gaze
patterns, body posture, proxemics and task-related behaviours
to construct non-parametric classifiers for engagement states
[5, 6]. When big gaps exist between and within target people,
these models often fail to fit everyone.

Deep learning models provide state-of-the-art perfor-
mance in many applications, including object detection,
emotion recognition, image classification [7] and compu-
tational social science such as empathy [8] and personality
[9]. Inspired by their performance, some methods apply deep
learning architecture to challenge the difficulties in engage-
ment estimation. Active learning and reinforcement learning
are employed to mitigate the person-specific styles of en-
gagement expressions in [10]. A recurrent neural network is
applied to capture the temporal dynamics in [2]. These studies
demonstrate efficient improvement in the personalised esti-
mation of engagement, but they still lack robustness across
diverse individuals [11].
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Fig. 2. An overview of the proposed TCA-Net model: the
embeddings of three modalities are standardised in scale and
proceeded modality-specific learning through projectors. The
computed modalities are fused pairwise using the proposed
concatenated-attention modules. The fused results, once con-
catenated, are then passed into the predictor for prediction.

Human behaviours can be expressed through various
modalities, such as voice, action, face, text and physiology,
which carry complementary information. Processing only a
single modality leads to a lack of comprehensive understand-
ing and can be easily affected by noisy data. In contrast,
multimodal systems have emerged as a promising solution
to these challenges. Figure 1 illustrates the difference be-
tween unimodal and multimodal models in the engagement
estimation task. Integrating information from various sources
makes the systems more robust to noise, offering higher ac-
curacy and adaptability to different contexts and individuals.
Studies such as [12, 11, 13, 14] have proved the notable ad-
vancements of modality fusion framework for engagement
estimation and other human behaviours.

This paper proposes a novel modality fusion framework,
TCA-Net, to address this challenge. TCA-Net accepts multi-
modal feature representations to estimate engagement scores.
The core component of TCA-Net – the concatenated atten-
tion fusion module – learns both intra- and inter-modality
correlations and computes the fused embeddings. This work
presents that the TCA-Net improves engagement estimation
performance on the NOvice eXpert Interaction (NoXi) dataset
[15]. Besides, the ablation study investigates the importance
of each involved modality feature in this task. Our major
contributions include: (1) A novel modality fusion frame-
work, TCA-Net, to estimate participants’ engagement, (2) A
concatenated-attention fusion module to combine different
modalities and (3) A study on modality significance in the
engagement estimation task.

2. RELATED WORK

Engagement estimation is a task to predict user engagement
or interest in a given context. It is crucial in various appli-
cations, such as recommendation systems, personalised ad-
vertising and user behaviour analysis. Early works primarily
adopt unimodal approaches, only using one data type. For
example, [6] used body posture to predict engagement, [16]
studied gaze data to recognise conversational engagement and
[10] combined Long Short-Term Memory network with rein-
forcement learning to estimate a child’s engagement level. A
vision transformer was applied to predict student engagement

in [17]. Due to the limitation of only focusing on one data
type, these models often lack accuracy and robustness.

Recent works have explored multimodal data, combining
information from various sources, such as visual, auditory
and textual cues, to enhance robustness and accuracy. For
instance, [14] combined learning-based and rule-based ap-
proaches to evaluate the estimation based on multimodalities.
[12] implemented Hybrid Majority Voting by fusing three
modalities – appearance, context and mouse movements –
to detect students’ behavioural engagement. Some studies
have experimented with different multimodal approaches on
the NoXi datasets. For example, [18] proposed the Dilated
Convolutional Transformer Model, which processed three
data types with a dilated convolution module and merged by
attention-based or gated-based fusion. [19] used a feedfor-
ward fully connected (FC) network with engineered video and
audio features. Finally, [20] adopted the subsequence feature
to learn engagement representation with Seq2seq modelling.

Multimodal fusion integrates information from multiple
modalities into a stable representation. Bilinear pooling fuses
visual and textual feature vectors to obtain a joint representa-
tion space by calculating the outer product and pooling [21].
However, operations like outer product and pooling may re-
sult in some loss of information. An attention mechanism,
on the other hand, is widely adopted for flexible and task-
specific multimodal fusion [13]. This paper proposes a novel
attention-based fusion model that can learn both inter- and
intra-modality correlations.

3. METHOD

3.1. Task Formulation

The engagement estimation task aims to continuously pre-
dict each participant’s conversational engagements, the con-
fidential score S. The score is computed from multiple data
sources, including head pose, body pose and human voice.

Estimation of participant engagement in the task involves
three main challenges. Firstly, the information fusion X̂
from different modalities Xi ∈ RN×L presents a complex
problem, where N represents the number of input feature rep-
resentations and L denotes the embedding length of each fea-
ture vector. There may exist heterogeneity and inconsistency
between different modalities, necessitating an effective inte-
gration and accurate estimate of participants’ engagement.
Secondly, the data from different modalities may be im-
balanced, meaning certain modalities may have significantly
more feature information than others. Lastly, due to the speci-
ficity of multimodal data, multimodal deep models require a
balance between model complexity and performance, along
with the selection of appropriate training techniques to avoid
overfitting and training difficulties. To address these chal-
lenges, this paper proposes a novel multimodal model based
on the attention-based fusion mechanism, termed TCA-Net.
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Fig. 3. The TCA-Net employs a feedforward MLP as the pre-
dictor, which accepts fused embeddings and computes the
engagement score. Additionally, batch normalisation and
Dropout are applied to avoid potential overfitting.

3.2. Overall TCA-Net

This work proposed a multimodal deep-learning network to
address the engagement estimation task. Based on the speci-
ficity of the multimodal dataset and to enhance the integra-
tion and utilisation of informative data, the proposed model
first embeds the input from multiple modalities with audio
Xa ∈ Rda , video Xv ∈ Rdv into corresponding projection
layers to align the dimensions of each modality input, which
can be represented as below where Pa = Pv = Pk:

Pa = Projectionaudio(da) (1)
Pv = Projectionvideo(dv) (2)
Pk = Projectionkinect(dk) (3)

The proposed TCA-Net, as shown in Figure 2, performs
pairwise learning on the available multimodal information,
which employs the concatenated-attention fusion module as
the core component to fuse the three types of input data.

The concatenated-attention fusion module performs atten-
tion learning on the two input modalities and outputs the fu-
sion results. Therefore, the entire network utilises three mod-
ules to conduct parallel learning for different modality pairs.
The outputs of the three fusion modules are concatenated to
represent the joint representation of all modalities.

The fused joint feature embeddings are then passed to the
last prediction stage, where the engagement score encoder
consists of a shallow feedforward network, as shown in Fig-
ure 3. Dropout is used in the middle to prevent overfitting,
possibly caused by multiple stacked FC. Finally, a Sigmoid
activation function is used for output activation, mapping to
the 0–1 range.
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Fig. 4. Proposed concatenated-attention fusion module. After
concatenating the features together, it is separated into differ-
ent affine layers to generate the correlation matrices C1 and
C2. These matrices are then integrated with their initial fea-
tures to calculate the modality correlations H1 and H2 using
specialised correlation computation blocks. Finally, applying
the linear layers and adding the original modality feature, the
formed attended features Xatt,1 and Xatt,2 are concatenated
to produce X̂ , which serves as the output of this module.

3.3. Concatenated-Attention Fusion

The deep features of the three input modalities – audio, video
and Kinect – were pre-extracted or recorded. Each modality
contains participants’ perspectives and physical information.
Video modality conveys rich appearance information about
the engagement, audio modality carries the energy relevant to
the intensity of the engagement, and Kinect modality contains
information on the location of various joints.

These three modalities provide relevant information at
different levels for a certain sequence. Multiple modali-
ties convey more diverse and comprehensive information
for engagement than a single modality. A concatenated-
attention fusion mechanism is proposed to reliably fuse these
modalities, which can effectively encode the intermodal data
and preserve intra-modal features. In this mechanism, the
joint representations are concatenated by any two types of
modality features, such as video-audio, video-Kinect and
audio-Kinect. In this way, the fused dual-modality feature
includes both individual modality information and the cap-
tured relationship between the two modalities. This proposed
concatenated-attention fusion module is shown in Figure 4.

The proposed concatenated-attention fusion module takes
feature vectors from two identical-scaled modalities. After
analysing the joint embedding using affine layers, correlations
are captured with each input modality. These inter-modality
correlations are computed and further transformed as atten-
tion weights through FC layers and combined with the cor-
responding input modality embeddings. At last, the merged



results are the produced fusion feature, which will be applied
for further prediction.

Let X1 and X2 represent two sets of deep features ex-
tracted from two different modalities, where X1 = {x1

1,x
2
1,

· · · ,xN
1 } ∈ RN×L and X2 = {x1

2,x
2
2, · · · ,xN

2 } ∈ RN×L.
N represents the number of the input feature representa-
tions, L denotes the embedding length of each feature vec-
tor, xn

1 and xn
2 represent the feature vectors extracted from

the two modalities under consideration, respectively, for
n = 1, 2, · · · , N samples. A compact concatenated attention
module is proposed here to make the model consider and
utilise more comprehensive information from both modali-
ties and alleviate the heterogeneity between modalities. The
joint representation J is obtained by concatenating two input
feature representations:

J = [X1,X2] ∈ RN×2L. (4)

Now the joint representation J gets through the affine lay-
ers to obtain the joint correlation matrices C1 and C2, respec-
tively, which are given by:

C1 = tanh(
JWj1√

2L
), (5)

C2 = tanh(
JWj2√

2L
), (6)

where Wj1,Wj2 ∈ R2L×L represent learnable weight ma-
trices, enabling the model to learn the most useful representa-
tions automatically.

The joint correlation matrices C1,C2 ∈ RN×L provide
a semantic measure of relevance across modalities. This type
of measurement makes it better to understand and utilise the
inter- and intra-modal relationships. Meanwhile, the higher
correlation coefficients within the joint correlation matrices
suggest that the associated samples strongly correlate across
different modalities.

To enhance the expressiveness, the original deep features
and the joint correlations are combined through the non-linear
transformation to compute the attention weights of modali-
ties by crossing the correlation computation layers. For the
modality feature X1, it is combined with its corresponding
joint correlation matrix C1 by using the learnable weight ma-
trix W1 and Wc1, which can be written as:

H1 = ReLU(X1W1 +C1Wc1), (7)

where W1 ∈ RL×L, Wc1 ∈ RL×L, and H1 indicates the
attention map of the corresponding modality. The ReLU acti-
vation function helps to capture complex patterns in the data.

Similarly, the attention map H2 of the other modality is
given by:

H2 = ReLU(X2W2 +C2Wc2), (8)

where W2 ∈ RL×L and Wc2 ∈ RL×L.

Table 1. Modalities and Dimensions of the NoXi Dataset
Modality Dimension

Audio (GeMAPS) 58
Audio (SoundNet) 256
Video (OpenFace2) 673
Video (OpenPose) 350
Kinect (Skeleton) 350
Kinect (AU) 17

Finally, after employing the learnable weighted matrices
Wh1 and Wh2 through the linear layers, the attended features
of these two modalities are given by:

Xatt,1 = H1Wh1 +X1, (9)
Xatt,2 = H2Wh2 +X2, (10)

where Wh1 ∈ RL×L and Wh2 ∈ RL×L.
The attended features Xatt,1 and Xatt,1 are further con-

catenated as:

X̂ = [Xatt,1,Xatt,2] ∈ RN×2L. (11)

The fused feature embeddings X̂ will be joined with other
concatenated-attention modules’ outputs and feedforward to
the predictor, as mentioned in the previous section.

4. EXPERIMENTS

4.1. Dataset

To demonstrate the performance of the TCA-Net and its fea-
ture fusion capabilities, this work conducts experiments with
a recent dataset named NOvice eXpert Interaction (NoXi)
[15]. This dataset was employed in the 2023 MultiMediate
engagement estimation challenge1 [22]. The confidential
score (degree of engagement) S in this dataset ranges from 0
(lowest) to 1 (highest).

The NoXi dataset recorded multimodal information con-
tained in 64 conversation sessions by experts and novices,
which were 25 hours and 18 minutes long. The record’s con-
tent simultaneously possesses characteristics of multiple lan-
guages, various topics (58 topics in diverse domains) and mul-
tiple features. The providers applied semi-automated solu-
tions and proposed a novel annotation tool, NOVA. The NoXi
dataset has 2,502,433 frame annotations in total with both vi-
sual and audio data. Furthermore, the recorded data can be
counted as the signal types with specific embedding dimen-
sions shown in Table 1.

The engagement estimation challenge with the NoXi
Dataset employed the Concordance Correlation Coefficient
(CCC) as the official evaluation metric. CCC is a statisti-
cal measure that assesses the agreement between two sets of

1https://multimediate-challenge.org/
Thanks to the challenge organiser and the NoXi dataset provider.

https://multimediate-challenge.org/


Fig. 5. Comparison of training and evaluation CCC for TCA-
Net with and without PCA preprocessing methods.

continuous variables. It reflects the accuracy of the model’s
predictions and emphasises the consistency between the pre-
dicted values and the actual data.

4.2. Implementation Details

The processed modal embeddings have the following feature
dimensions: 314 for audio features, 1023 for video features
and 367 for Kinect features. Additionally, for computational
convenience, the TCA-Net utilises projection layers for each
of the three modal features to obtain embeddings of the same
dimension with 256 for projection embeddings size, which
then serve as inputs to the concatenated-attention module.

We implement TCA-Net by using Python 3.8.5 and Py-
Torch 1.9.0 framework. The TCA-Net is trained from scratch
for 30 epochs with a batch size of 256. The motivation be-
hind the training process is to minimise the Mean Squared
Error (MSE) loss function. During training, the AdamW op-
timiser is utilised, along with a cosine annealing learning rate
scheduler, which suppresses from 5 × 10−6 to 5 × 10−7 to
achieve better convergence of the loss. To control potential
overfitting, a weight decay of 1 × 10−4 is set, and a Dropout
mechanism with a 0.25 ratio is used to randomly select fully-
connected layers’ neurons. We employed two NVIDIA V100
GPUs to train the proposed TCA-Net on the NoXi dataset.

4.3. Results and Analysis

We compare TCA-Net ’s performance with the baseline pro-
vided by the 2023 MultiMediate challenge organiser [22] and
the models reported by challenge participants [18, 19, 20] (Ta-
ble 2). The baseline approach fuses the features through a
straightforward linear fusion method after Principal Compo-
nent Analysis (PCA) preprocessing. The engagement score is
then trained (supervised) using a feedforward neural network.
To align with the settings of the baseline study [22], we main-
tained the same PCA operation during data preprocessing to

Table 2. Comparison of CCC Scores on Validation and Test
Sets

Method/Reference Validation CCC Test CCC

Head [AUs] [22] 0.31 0.22
Body [OpenPose] [22] 0.53 0.43
Voice [GeMAPS] [22] 0.58 0.55
Baseline with PCA [22] 0.71 0.59
DCTM [18] 0.75 0.66
FC [19] 0.74 0.70
Seq2seq [20] – 0.71
TCA-Net (ours) 0.73 0.75
TCA-Net with PCA (ours) 0.73 0.74

cope with the validation bias that might be brought from PCA.
This PCA operation was applied to reduce the dimensional-
ity of all modal feature embeddings. Consequently, in this
group experiments, adjustments were made to the projection
layers of the TCA-Net to modify the input dimensions and
maintain the rectified output dimensions of the multimodal
features consistent with the aforementioned setup. The de-
tails of training and evaluation CCC for both methods, shown
in Figure 5, present the proper learning progress of our pro-
posed model. Because of the application of anti-overfitting
techniques, such as Dropout and batch normalisation, there
are gaps between the training and evaluation curves.

By comparing the results of TCA-Net trained with modal-
ity embeddings that have undergone PCA dimensionality re-
duction and those that have not, it is evident that there is still
a slight decline in performance after PCA processing (Fig-
ure 5). While PCA removes noise and redundant information
from the data, it also leads to the loss of information valu-
able for engagement prediction. Direct dimension mapping
through the projectors also enhances the model’s capability
to capture the intricate structure within each modality data.

Our network’s test set performance outperforms the base-
line method and some visible challenge participants of the
2023 MultiMediate challenge (Table 2). It can be inferred that
our concatenated attention module plays a significant facili-
tative role in integrating modalities. Through pairwise learn-
ing, the obtained inter-modality correlations serve as attention
weights, enabling module design to achieve the desired fusion
effect in multiple modalities.

The complexity of our model is 160.865 GFLOPS. There-
fore, it can run on common devices like the RTX 1080Ti (hav-
ing 11.34 rated TFLOPS), which took an inference time of
0.01418 seconds in our experiment.

From the perspective of network structure design, the
TCA-Net adopts several FC layers for inter-modality corre-
lation computations. Dropout and batch normalisation are,
therefore, widely used to solve the risk of overfitting, which
might not be an elegant solution. Future work can consider
optimising the structure by replacing the FC layers with an-
other alternative, such as the 1 × 1 convolution layer, global
pooling layer, etc. In addition, the design of the engagement



Table 3. Engagement Estimation Performance of TCA-Net on
Different Modality Types of the NoXi Dataset

Modality Types Validation CCC Test CCC

Audio + Video 0.59 0.61
Audio + Kinect 0.65 0.65
Video + Kinect 0.47 0.50

prediction head can also be upgraded to a deeper decoder.

4.4. Ablation Study

We investigate the contributions of each modality by validat-
ing the proposed network by training with two of the three
types of modal feature embeddings in the NoXi dataset. Sim-
plifying TCA-Net to incorporate only two modal data for en-
gagement estimation, we assess the individual contributions
of each modality to this task.

The setup for ablation experiments remained consistent
with previous work. The correlation between engagement es-
timation and modality representation was analysed by com-
paring the CCC of bimodal fusion predictions (Table 3).

The comparison of performance from bimodal fusion
shows that the audio modality significantly contributes to
the engagement estimation task, as the performance in the
experimental group lacking audio is inferior to the others.
The above results also potentially indicate an overlap of the
information in video and Kinect modalities, with limited com-
plementarity. This observation could account for the lower
performance of the experimental group (video and Kinect).

By observing Table 2 in the preceding experimental re-
sults section, similar viewpoints to this ablation study can be
derived. In the baseline method, researchers evaluated using
individual modalities for engagement estimation. The eval-
uation results also demonstrated that using the voice modal-
ity [GeMAPS] alone yielded significantly better results com-
pared to using only the Head modality [AUs] or only the
Body modality [OpenPose] alone. This further indicates that
voice should be given more significant consideration for the
engagement estimation task.

From another perspective, considering the modality com-
plementary property in multimodal learning, some modalities
might exhibit suboptimal performance when predicting inde-
pendently but could contribute valuable supplementary infor-
mation when combined with other modalities. Even though
the audio modality may appear to contribute most signifi-
cantly, combining video and Kinect modalities could poten-
tially provide crucial contextual information.

5. CONCLUSIONS

This study explored the intricacies of estimating human en-
gagement using artificial mediators in diverse contexts. The
proposed TCA-Net effectively integrates multiple modalities

like audio, video and Kinect data through concatenated-
attention fusion modules, aiming to capture and merge the
nuanced information spread across these channels. The over-
all TCA-Net model presents outstanding performance on
the multimodal engagement estimation task. The proposed
network achieves 0.75 CCC on the NoXi dataset, outper-
forming the linear fusion baseline and other participants in
the 2023 MultiMediate challenge using the same dataset.
This work also investigates the modality significance in the
engagement estimation task, which presents that audio plays
a critical role in predicting engagement scores. Such an en-
gagement estimation model can be integrated into predicting
other aspects of human communication, such as empathy,
emotion and social dynamics. Furthermore, our proposed
multimodal TCA-Net can be extended to other tasks, such as
visual question answering, video content understanding, and
cross-modal retrieval.
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