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Abstract—Speech-based human-computer interac-
tion is a vital research area where Bengali speech
requires substantial research for being efficient like
English. Nowadays, most speech-related research in-
volves Deep Neural Networks (DNNs). We present
comprehensive results on DNN hyperparameter tun-
ing on isolated Bengali vowel and word classification.
Two separate datasets of isolated Bengali vowels and
words are utilized in a four-hidden-layered DNN con-
figuration. Five formant frequencies have been ex-
tracted for all fourteen vowels and words, and after
applying a necessary feature standardization technique,
these acoustic features are utilized in the DNN in-
put layer. Three hyperparameters—optimizer, batch
size, and dropout—have been tuned to develop an
optimum DNN classification model. We report the
outcome achieved after applying different sets of val-
ues for these three hyperparameters. Finally, we
recommend an Adadelta optimizer, a batch size of
128 or 256, and a dropout between 0.25 to 0.4 after
the first hidden layer. The DNN formed by utilizing
these recommended hyperparameters will be a poten-
tial pre-configured speech classifier for various human-
computer interaction-based devices and systems.

Index Terms—Hyperparameter tuning, Deep neural
network, Bengali speech recognition, Optimizer, Batch
size, Dropout

I. Introduction
Having 267.7 million total users in total, Bengali is the

6th most spoken language in the world, including 228.7
million native speakers [1]. However, speech recognition
research on the Bengali language is not comparable to
high-resource languages like English. For this reason,
efficient uses of Bengali in real human-machine interaction
devices are still facing challenges. Support of Bengali
language in popular speech recognition services like Google
Assistant, Apple Siri, Amazon Alexa, and Microsoft Cor-
tana is either not efficient or not supported at all. To
eradicate these issues, there is no other option than more
investigations in these domains.
Most state-of-the-art speech recognition researches in-

volve Deep Neural Networks (DNNs), at least to some

extent. Whether it is a basic feedforward DNN or a more
advanced architecture like Convolutional Neural Network
(CNN) or Recurrent Neural Network (RNN), it consists of
fully-connected DNNs. Therefore, the proper development
of a DNN model has significant importance.
A basic DNN or a more advanced CNN model can solve

most classification problems. In many cases, a basic DNN
model is preferred over a more complex CNN model due
to its simplicity. For example, recently, authors in [2] have
demonstrated a complex classification task employing sim-
pler DNNs (also called multilayer perceptrons) rather than
a CNN. Moreover, a more simplistic and efficient model
is preferable for deploying the model in low-computation-
capable end devices such as smartphones, Arduino, and
Raspberry Pi. That is why we have selected a basic DNN
for the isolated vowel and word classification.
Speech token (isolated vowels, words, etc.) classifi-

cation has several crucial applications, such as emotion
recognition, speech dictation in vehicles, smartphones,
and laptops, home automation, and assisting physically-
challenged and old-age people [3]. Yusof et al. clas-
sified five Malaysian vowels using a DNN with formant
frequency features [4]. Authors in [5] classified read and
conversational speech of four Indian languages, including
Bengali, by utilizing a single-layer feedforward neural net-
work model. Furthermore, they used a multi-layer DNN
model for phoneme recognition. Authors in [6] classified
ten English command words employing DNN and CNN.
Similarly, reference [7] reported classification of twenty
Dari speech tokens using CNN.
There are several works reported on the Bengali lan-

guage as well. Reference [8] used CNN to classify ten Ben-
gali spoken digits. Furthermore, authors in [9] used CNN
and RNN for isolated Bengali speech recognition. The
above researches have reported their specific model and
performance, with outcomes of one/two hyperparameter
variations. In contrast, we report comprehensive results
on three specific hyperparameter variations, indicating
which hyperparameter to select in similar studies.
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Information or features are often retrieved from raw
speech sounds through appropriate feature extraction
techniques. The resonance frequencies of speakers’ vocal
tract, known as formant frequency, are used in many
speech-related researches, such as classifying Malaysian
vowels [4], Turkish vowels [10], and finding the place of
articulation [11]. Our work utilized formant frequency as
the acoustic cue for the DNN hyperparameter tuning in
both Bengali vowel and word classification. To the best of
our knowledge, research reports on DNN hyperparameter
tuning are rarely found except a few studies [12], [13].
The specific contributions of this article include the

outcome of three specific and essential hyperparameter
tuning, from where we can conclude which set of hyperpa-
rameters are more suitable for such a Bengali speech token
classification model. Future research on similar classifica-
tion may directly employ these optimum hyperparameters
without further tuning, or at least they can get a hint
on where to tune. Furthermore, this research presents a
Bengali speech token recognition pipeline using a DNN-
based classification model.
The rest of this article is organized as follows. Section II

presents relevant background on what is hyperparameters
and three specific hyperparameters we worked on. The
datasets, feature extraction, and the DNN architecture
are illustrated in Section III. Then, the results on three
hyperparameters’ tuning are presented and described in
Section IV. Finally, the article is summarized in Sec-
tion V.

II. Deep Neural Network Hyperparameters
A. Hyperparameter vs. Parameter
Hyperparameters are some specific settings, proper val-

ues of which need to be set externally to define the
behavior of learning algorithms [14]. Generally, these
values of hyperparameters are not adapted automatically
by the learning algorithm itself. Instead, we need to select
the optimum value through a series of experiments with
different values. The process of finding out the optimum
value of these hyperparameters is called hyperparameter
tuning [12].
Another relevant terminology to hyperparameter is the

parameter that consists of weights and biases of a DNN—
the optimum values of which are adapted by the learning
algorithm itself through feedback mechanism [15]. Impor-
tant DNN hyperparameters include the number of hidden
layers, number of hidden neurons on the hidden layers,
loss function, activation functions, optimizer, batch size,
dropout rate, number of epochs, and so on [13].

B. Optimizer
To find out the best set of parameter values through

training, we minimize (or maximize in some cases) the
cost (also called loss) function. This task of minimizing or
maximizing is called optimization, which is done by an op-
timizer. The most common example of such an optimizer

is gradient descent that works based on the derivative of
the cost function [14]. There are several variations built on
top of this gradient descent optimization method, such as
Stochastic Gradient Descent (SGD), Adadelta, RMSProp,
and Adam [16]. Each of them has pros and cons related
to training time, accuracy score, and convergence rate.

C. Batch Size

Batch size refers to the number of training samples
passed at once while optimizing (training) via gradient
descent-based optimizers. The batch size equal to one
refers to the SGD optimizer where only one sample is
passed at once. All other optimizers mentioned above
(Adadelta, RMSprop, and Adam) have the batch size
hyperparameter that we need to specify before training
the DNN model.

D. Dropout

Dropout is a powerful regularization technique used
in deep learning [14]. Why do we need regularization?
A central difficulty in deep learning is the performance
difference in using training data versus test data (i.e., new
input). Better performance means the model gives a lower
loss score or error and a higher classification accuracy
or other related evaluation metrics. DNN models often
perform well on training data, but performance drops at
new input samples in many cases. Such cases (a too
large gap between training and testing scores) are called
overfitting [14]. In its simplest form, dropout means
randomly ignoring (zeroing out) some hidden neurons of
a model. The dropout rate refers to the fraction of
the weights zeroed out during training. No neurons are
dropped during the testing phase; instead, the output is
scaled by the dropout rate to compensate for the zeroing
out [15].

III. Methods

A. Dataset

We experimented with hyperparameter tuning on two
separate classifications: seven Bengali vowel sounds in one
classification and seven Bengali word sounds in another.
The isolated vowels were /অ/[/O/], /আ/[/a/], /ই/[/i/],
/উ/[/u/], /ঋ/[/ri/], /এ/[/e/], and /ঐ/[/oi/]; the isolated
words were েবাতল, বন, কিপ, েদাকান, েশষ, সিঠক, and উপের. These
speech tokens were collected from 20 male and female
volunteers aged between 20 to 26 years using a typical
smartphone. Instructing the volunteers to pronounce the
speech tokens in two different accents, 40 isolated utter-
ances were prepared in each of the 14 speech tokens. Thus,
there were 40×14 = 560 speech samples in total. Detailed
description and data curation process are available at [17].
The complete datasets (vowels and words) are publicly
available for research purposes [18].
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B. Feature Extraction & Standardization
We chose formant frequency as an acoustic feature that

holds speech information. We extracted five formant
frequencies by taking samples at every 6 ms interval in
a window length of 25 ms using PRAAT script [19].
Since these features had values at different ranges, we
standardized them according to (1).

x′
Fi

=
xFi − xF

σF
; i = 1, 2, . . . , N (1)

where, xF represents each of the five formant frequencies
(F1, F2, F3, F4, and F5), N is the total number of samples
for each formant frequency, xF and σF are the mean and
standard deviation of corresponding formant frequency,
and x′

Fi
is the standardized features having a mean of zero

and variance of one. These features were supplied in the
input layer of the DNN-based classification model. The
above standardization process essentially helps DNNs and
other machine learning algorithms to converge faster [20].

C. Deep Neural Network Architecture
We utilized a four-hidden-layered DNN architecture to

experiment with previously mentioned hyperparameters.
As depicted in Fig. 1, the number of hidden neurons in
these hidden layers were 128, 64, 32, and 16, respectively.
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Activation: 
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1

Fig. 1. Four-hidden-layered DNN configuration used in this study.
The same model was used for both vowel and word classifications.

Seven neurons in the output layer represent seven vowel
classes or seven word classes, depending on whether it is
the vowel or word classification. All hidden layers had tanh
activation function, whereas the output layer had softmax
activation function since it is a multi-class classification
model. We utilized categorical cross-entropy as the cost
or loss function. As mentioned previously, these values—
number of hidden layers, neurons, loss, and activation
functions—are also hyperparameters. We also came up
with these hyperparameters’ values through tuning, but it
is out of the scope of this article.
We evaluated classification accuracy as the metric to

compare among hyperparameters. Along with correct
predictions, DNN often mispredicts some sample inputs

unless the accuracy is 100%. For illustrations, let us
consider any specific class as “class X.” Now, any “class X”
sample predicted as “class X” is a true positive prediction,
and any “not class X” sample predicted as “not class X” is
a true negative prediction. Correct predictions include true
positive and true negative predictions, whereas inaccurate
predictions are any “class X” sample predicted as “not
class X,” or any “not class X” sample predicted as “class
X.” As shown in (2), the accuracy is the ratio of correct
predictions to all predictions (both correct and incorrect).

Accuracy =
True positive+ True negative

All predictions (2)

IV. Results & Discussion
A. Changes in Optimizer
We used a batch size of 32 in the following experiments

with Adadelta, RMSprop, and Adam optimizers. The
learning rate was the Keras default value of 0.001, and
other optimizer parameters were also the default value
available in the optimizer functions of Keras (Keras [21]
is a software library we used to implement the DNN-
based classification). Fig. 2 depicts vowel classification
training and validation accuracy curves using Adadelta
optimizer. After training and validating for 50 epochs, the
model achieved around 94% training accuracy and 86%
validation accuracy.

Fig. 2. Vowel classification accuracy with Adadelta optimizer at
batch size = 32.

The same classification model optimized with RMSprop
optimizer achieved 90% training accuracy and 80% val-
idation accuracy with the same number of training and
validation epochs, as shown in Fig. 3.

Fig. 3. Vowel classification accuracy with RMSprop optimizer at
batch size = 32.
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Furthermore, we tested the same classification model
with Adam optimizer with the same number of training
and validation epochs. It achieved 75% training accuracy
and 65% validation accuracy shown in Fig. 4.

Fig. 4. Vowel classification accuracy with Adam optimizer at batch
size = 32.

Tho above comparisons reflect that Adadelta optimizer
performed better with the classification model at batch
size = 32.

B. Changes in Batch Size
The following experiments with different batch sizes uti-

lized Adam optimizer. In Fig. 4, we have already observed
75% training accuracy and 65% validation accuracy at
batch size = 32. Increasing the batch size to 128 yielded
a training and validation accuracy of around 97.5% and
80%, respectively. The corresponding accuracy curves
with epochs are shown in Fig. 5.

Fig. 5. Vowel classification accuracy at batch size = 128.

Increasing the batch size further to 200 did not improve
the classification performance. In the training and vali-
dation curves shown in Fig. 6, it achieved 88% training
accuracy and 80% validation accuracy. This training
accuracy is noticeably lower than what we observed at
batch size = 128.
Finally, a batch size of 256 resulted in 97% training and

80% validation accuracy shown in Fig. 7.
Therefore both training and validation accuracy were

higher for batch size = 128 and 256. Nevertheless, the
same validation accuracy was observed on batch size =
128, 200, and 256.

C. Changes in Dropout
As discussed previously, dropout helps reduce

overfitting—it decreases the distance between training

Fig. 6. Vowel classification accuracy at batch size = 200.

Fig. 7. Vowel classification accuracy at batch size = 256.

and validation scores. Table I presents the effect of
different dropout rates after the first, second, and third
hidden layers. Loss and accuracy scores at both training
and validation phases are reported with corresponding
differences.
Without dropout, the table shows noticeable differences

between training and validation scores—a difference of
0.2769 in loss and 0.1004 in case of accuracy. When a
dropout of 0.15 was applied after the first hidden layer,
the loss difference reduced to 0.2168, and the accuracy
difference dropped to 0.0701, which proves a reduction
of overfitting. However, at the same time, validation
accuracy also got lowered.
Additionally, we tested applying dropout after the sec-

ond and third hidden layers. Only a 0.15 dropout rate
after both second and third hidden layers showed similar
outcomes of either 0.40 or 0.45 dropout rate after only
the first hidden layer. Lastly, when dropout was applied
after the first three hidden layers, even a small dropout
of 0.15 showed the least overfitting here, but at the same
time, the least accuracy. Therefore, there was no point in
adding more dropouts after this stage.
We further demonstrate the effect of dropout change

graphically. Fig. 8 presents word classification loss and
accuracy curves for both training and validation phases
when four different dropout rates were applied after the
first hidden layer. The classification model was trained
and validated for 300 epochs here to thoroughly observe
the dropout effect.
Fig. 8a depicts the curves when a dropout of 0.25 was

applied after the first hidden layer. Fig. 8b shows the effect
of replacing the above dropout by 0.35. Increasing the
dropout rate from 0.25 to 0.35 resulted in a closer distance

448

Authorized licensed use limited to: BRAC UNIVERSITY. Downloaded on May 27,2022 at 05:26:42 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
Word classification loss and accuracy at different dropout rates. A single dropout rate

indicates that it is applied after only the first hidden layer.

Loss Accuracy
Dropout Rate(s) Training Validation Difference Training Validation Difference

0 0.7795 1.0564 0.2769 0.7218 0.6214 0.1004
0.15 0.8458 1.0626 0.2168 0.6882 0.6181 0.0701
0.25 0.8793 1.0332 0.1539 0.6778 0.6318 0.046
0.35 0.9423 1.0410 0.0987 0.6474 0.6158 0.0316
0.40 0.9643 1.0579 0.0936 0.6360 0.6107 0.0253
0.45 1.0050 1.0702 0.0652 0.6220 0.6039 0.0181

0.15, 0.15a 0.9759 1.0539 0.078 0.6363 0.6054 0.0309
0.25, 0.15a 1.0095 1.0826 0.0731 0.6252 0.6028 0.0224

0.15, 0.15a, 0.15b 1.1515 1.1535 0.002 0.5637 0.5663 0.0026
a After second hidden layer
b After third hidden layer
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Fig. 8. Word classification loss and accuracy curves when four different dropout rates were applied after the first hidden layer.

between training and validation curves. Replacing the
dropout by 0.40 further reduced the overfitting (Fig. 8c).
Finally, Fig. 8d shows that further increase of dropout to
0.45 almost diminished the overfitting, but at the same
time, the accuracy score got lowered.

Therefore, dropout does reduce overfitting, but in the
same instance, it reduces validation accuracy that we
genuinely care about. Thus, we should balance between
overfitting and validation accuracy. Comparing all these
dropout values in Table I and Fig. 8, we recommend a
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dropout rate between 0.25 to 0.4 after only the first hidden
layer to keep the balance.
D. Comparative Analysis
We achieved the highest accuracy of 86% using Adadelta

optimizer on vowel classification. The closest related work
[4] classified five Malaysian vowels using DNN with for-
mant frequency features. After different hyperparameter
tuning with adaptive learning rates, their best accuracy
was 87.04% using six formant frequency-related features
(three raw formants and their differences). Although the
primary aim of our study is to demonstrate outcomes
on DNN hyperparameter tuning rather than presenting
the best accuracy, our result—with only five raw formant
features and without any adaptive learning rate—is quite
competitive. Our future work will include other DNN
architectures, such as CNN and RNN, to improve the
performances and to report comparable accuracy with
other works in the domain.

V. Conclusion
Although the Bengali language is quite widespread,

research on it to use as real communication devices is not
that widespread. Speech token recognition—for example,
classification of isolated vowels and words—has several
applications, such as emotion recognition, speech dictation
gadgets, home automation, etc. DNN is a well-known
algorithm used in many studies to classify these tokens.
One of the critical steps in implementing DNN is to select
optimum values of its hyperparameters, such as optimizer,
batch size, and dropout rate. We report hyperparameter
searching outcomes on DNN-based isolated Bengali vowel
and word classification. Experimental results reveal sev-
eral key findings. Firstly, Adadelta optimizer performs
better at batch size = 32. Secondly, training and vali-
dation accuracy are higher at batch size = 128 and 256.
Thirdly, dropout reduces overfitting, but at the same time,
it reduces validation accuracy, and to keep a balance
between these two, we recommend a dropout rate between
0.25 to 0.4 after only the first hidden layer. The outcomes
of this article would be useful in several cases. Future
research on similar speech-token classification may utilize
these hyperparameter values to develop an optimized and
robust DNN classification model. The DNN configuration
presented in this article can also be used as a base classi-
fication model in similar studies. Thus, it will help boost
research on the Bengali language, and with research, we
hope to compete with the rapidly changing world.
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