
Received: 19 July 2021 Revised: 31 August 2021 Accepted: 4 September 2021 The Journal of Engineering

DOI: 10.1049/tje2.12082

ORIGINAL RESEARCH PAPER

How many Mel-frequency cepstral coefficients to be utilized in

speech recognition? A study with the Bengali language

Md. Rakibul Hasan1,2 Md. Mahbub Hasan1 Md Zakir Hossain3,4

1 Department of Electrical and Electronic
Engineering, Khulna University of Engineering &
Technology, Khulna, Bangladesh

2 Department of Electrical and Electronic
Engineering, BRAC University, Dhaka, Bangladesh

3 Agriculture and Food, ML&AI FSP,
Commonwealth Scientific and Industrial Research
Organisation, Black Mountain, Canberra, Australia

4 Biological Data Science Institute, Australian
National University, Canberra, Australia

Correspondence

Md. Mahbub Hasan, Department of Electrical and
Electronic Engineering, Khulna University of Engi-
neering & Technology, Khulna 9203, Bangladesh.
Email: mahbub01@eee.kuet.ac.bd

Abstract

Speech-related research has a wide range of applications. Most speech-related researches
employ Mel-frequency cepstral coefficients (MFCCs) as acoustic features. However, find-
ing the optimum number of MFCCs is an active research question. MFCC-based speech
classification was performed for both vowels and words in the Bengali language. As for
the classification model, deep neural network (DNN) with Adam optimizer was used. The
performances were measured with five different performance metrics, namely confusion
matrix, classification accuracy, area under curve of receiver operating characteristic (AUC-
ROC), F1 score, and Cohen’s Kappa with four-fold cross-validations at different number
of MFCCs. All performance metrics gave the best score for 24/25 MFCCs; hence it is sug-
gested that the optimum number of MFCCs should be 25, although many existing studies
use only 13 MFCCs. Furthermore, it is verified that increasing the number of MFCCs
yields better classification metrics with lower computational burden than the increment of
hidden layers. Lastly, the optimum number of MFCCs obtained from this study was used
in a more improved DNN model, from which 99% and 90% accuracies were achieved for
vowel and word classification, respectively, and the vowel classification score outperformed
state-of-the-art results.

1 INTRODUCTION

Speech processing-based systems such as Microsoft Cortana,
Google Assistant, and Amazon Alexa have vastly simplified our
modern life. These command-based services are a helping hand
not only for ordinary people but also for physically challenged
and old-age people. In general, speech recognition devices and
systems have made several automations in our lives—home
automation, automation in smartphones, laptops, and vehicles.
Apart from these devices and systems, speech processing is
making a significant impact in healthcare, such as diagnosis of
Parkinson’s disease [1], Dementia [2], and Alzheimer’s disease
[3]. Other applications include wearable for deaf persons [4],
keyword spotting [5], emotion recognition [6], accent classifica-
tion [7], and language identification [8]. Accordingly, research
employing speech processing is booming with a particular inter-
est in speech recognition, classification, and generation.

The authors of [9] specify some standard features used in
phone-based speech recognition systems. In general, the stan-
dard spectral features, including linear prediction cepstral coef-
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ficient (LPCC) and Mel-frequency cepstral coefficient (MFCC)
representing the gross shape of the vocal tract, are the most
widely used. For example, a recent survey paper [10] reports
24 contemporary works on the Bengali language, out of which
15 works have used MFCC as input features. Another survey
paper on Arabic speech recognition [11] reports 13 studies on
isolated words speech recognition, out of which 12 studies have
used MFCC. Furthermore, da Silva et al. [12] state that the best
recognition performance can be achieved by utilizing MFCC.
Therefore, MFCC is the feature of significant interest in most
speech-related researches.

The broad demand for MFCC can be proved from sev-
eral studies in the Bengali language. The authors of [13] clas-
sified ten spoken Bengali digits by using MFCC features. In a
Bengali speech corpus development, Das et al. [14] performed
phoneme recognition using 13 base MFCCs and their first and
second-order derivatives. The authors of [15] also used the same
features to develop a Sphinx3-based Bengali speech recogni-
tion system with the main focus to help visually impaired peo-
ple. The authors of [16] performed isolated Bengali speech
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recognition employing MFCC features. Furthermore, Sumon
et al. [17] experimented classification of ten Bengali short
speech words based on MFCC features and raw audio files in
two different classification models. They found that MFCC-
based classification outperforms raw audio-based classification.
The authors of [18] performed recognition of Bengali speech
characters (vowels and consonants) using MFCC features. On
top of these, Badhon et al. [19] remarked some state-of-the-art
studies in Bengali Speech Recognition up to the year of 2019.
Their study reveals that MFCC and linear prediction coefficients
are the most adopted feature extraction techniques.

Apart from the Bengali language, MFCC has been used in
other language researches as well. Most of them utilized 13
MFCC features in a deep neural network (DNN) classifier, such
as recognition of speakers [20], English phoneme [21], emotion
from English audio [6], five Malayalam vowel phonemes [22],
twenty Dari speech tokens [23], three Arabic words [24], and ten
English command words [25]. Some studies also prefer convo-
lutional neural network (CNN) models such as isolated English
word recognition by Soliman et al. [26]. The authors of [27]
developed a real-time speech emotion recognition system from
continuous speech utilizing three cepstral features—perceptual
linear prediction (PLP) cepstral coefficients, MFCC, and LPCC.
Furthermore, Salau et al. [7] performed accent classification
of three Nigerian languages using MFCC features. From their
comparison with similar studies, it is evident that MFCC is the
most accepted feature.

Selection of the number of coefficients in any appropriate
feature is as essential as the selection of classifiers, and in
fact, classification performance employing MFCC is undoubt-
edly dependent on the optimum number of coefficients [28].
Our main contribution is to find out the optimum number
of MFCCs to extract the best possible score. Classification
performance can be improved by incrementing the number of
MFCCs and the number of hidden layers. More MFCC features
indicate more acoustic information from speech. Therefore,
when more MFCCs are used, DNN’s computational burden
increases for classifying information associated with additional
MFCCs. Similarly, increasing the number of hidden layers also
raises the computational burden of DNN. Therefore, a question
arises: which one (MFCC increase vs. hidden layer increase) can
produce a better result with a minimum computational burden?
To the best of the authors’ knowledge, very few articles [12, 28]
address similar questions and related issues. We have reported
on this issue based on the Bengali language. Beside this, we
developed a more improved DNN-based classification model
to pull out the best possible classification score utilizing the
optimum number of MFCC. Comparison with other relevant
studies reveals the competitiveness of our classification scores.
Since vowels and consonants are the fundamental building
blocks of any language, proper detection of vowels and con-
sonants holds primary importance for any speech recognition
system of that language. Moreover, a combination of vowels and
consonants produces speech sounds that hold necessary infor-
mation to communicate. Thus, the outcome of this research will
help increase the performance of MFCC dependent systems.

This article is organized as follows. First, Section 2
presents the datasets, MFCC extraction process, DNN-based
classification model, and overall workflow. Then, Section 3
can be broadly classified into four subsections. Firstly, we
tried to find the optimum number of MFCC. Secondly, we
compared the suitability between MFCC increase and hid-
den layer increase. Thirdly, we varied the DNN configuration
to find out the best possible score with the optimum num-
ber of MFCCs, and finally, we compared both the perfor-
mance score and the number of MFCCs used in related studies.
Furthermore, all findings and applications are summarized in
Section 4.

2 MATERIAL AND METHODS

This section describes the datasets and core methodologies
involved. A sketch of the steps involved is depicted in Figure 1.

To perform the three types of experiments mentioned in the
Introduction section (finding the optimum number of MFCC;
suitability between MFCC and hidden layer increase; and secur-
ing the best possible score), we have first designed the exper-
imental setups. For the classification of vowels and words,
DNN architecture is utilized, and the structure is also tuned
to obtain better classification results. Tuning involves the opti-
mum number of hidden layers, number of neurons in them, acti-
vation functions of respective layers, loss function, optimizer
and its learning rate, batch mode training, batch size, number
of epochs, train-test split ratio, and evaluation metrics or accu-
racy indexes. In all these cases, we had multiple options, from
where we have selected optimum one by tracking the evaluation
metrics. The descriptions of these steps are given in the follow-
ing subsections.

2.1 Speech collection and dataset
preparation

We have two datasets—one for vowel classification and
another for word classification [29]. Seven Bengali vow-
els (/ /[/ɔ/], / /[/a/], / /[/i/], / /[/u/], / /[/ri/],
/ /[/e/], and / /[/oi/]) and seven Bengali words
( , and ) were selected
for vowel classification and word classification, respectively.
We collected these data from 20 Bangladeshi speakers (age
20–26 years), and Bengali is their first language. Guiding the
speakers to pronounce the speeches in two different accents,
we have collected 40 sound signals corresponding to each of
these seven vowels and words. We recorded the sounds on a
“Xiaomi Redmi 3” smartphone and later processed them in
version 2.2.2 of the Audacity software [30]. Accordingly, we
have created the two datasets, where we have 40 utterances in
each of the seven classes for both vowels and words. Therefore,
each dataset consists of 40 × 7 = 280 samples, and considering
two datasets (vowels and words), we have 560 samples in total.
Figure 2 presents the waveshape of two sample sounds from
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FIGURE 1 Steps involved in this work

FIGURE 2 Waveshapes of a vowel and a word sound from the datasets

the datasets. It portrays that the vowel waveform is relatively
steady, but the word waveform has more variations as it is
composed of consonants and vowels.

The volume of the datasets used in this work is compa-
rable to other similar researches, such as [18], [31], and [32].
Particularly for Bengali voice recognition, Syfullah et al. [18]
used only 20 different sample inputs for each of their Ben-
gali characters to classify. In a neural network-based word
classification, Selvan and Rajesh [31] used 42 samples for
each of their words. On the contrary, our work has uti-
lized 40 different samples for each of our Bengali characters
and words. Furthermore, Baquirin and Fernandez [32] showed
that 110 sound clips are reasonable for this type of works,
whereas we used 280 sound clips for both vowel and word
classification.

2.2 MFCC extraction and standardization

MFCC feature extraction process involves applying discrete
Fourier transform on a signal window, taking the logarithm, and
then expressing on a Mel scale, followed by a discrete cosine
transform (DCT) [9]. Then the DCT components refer to the
MFCCs. We have utilized version 0.7.2 of the librosa package
[33] in the Python programming language to extract the MFCC
features. Extracted MFCC features have a different range of
values, and to utilize these values with a target to converging
the DNN model faster, we have standardized all MFCCs [34]
according to Equation (1).

x′i =
xi − xi

𝜎i
(1)
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FIGURE 3 The architecture of a fully
connected DNN-based vowel classification model
having two hidden layers. Input neurons represent
the MFCC features, and output neurons represent
the output vowel classes of the vowel classification
model

where xi is the ith MFCC, xc and 𝜎i are the mean and standard
deviation of ith MFCC. After that, we utlize these standardized
MFCC x′i in classification of vowels and words.

2.3 Deep neural network model

In a typical deep neural network-based classifier, the number
of neurons in the input layer equals the number of input fea-
tures used, and the number of neurons in the output layer
equals the number of output classes to classify. In our case,
we have seven output classes for both vowel and word clas-
sification models, and we varied the number of input MFCC
features to find out the optimum number of MFCC features.
There could be several hidden layers in between the input and
output layers depending on the classification scenario. We have
utilized two hidden layers of 32 and 16 neurons, respectively,
to find out the optimum number of MFCC, the architecture
of which is presented in Figure 3 particularly for vowel clas-
sification. As we varied the number of input features during
the optimum number of MFCC searching, the input neurons
of the Figure 3 changed accordingly. Plus, for word classifica-
tion, the output classes correspond to seven words. Further-
more, after finding the optimum number of MFCC features,
we tried to obtain the best possible score, and to do this, we
varied the number of hidden layers and the number of neurons
on them.

2.3.1 Weights, biases, and hyperparameters

Weights and biases are two fundamental trainable parameters of
any DNN-based model. In any dense layer, the output of any
neuron is calculated according to Equation (2).

v = b +

n∑

i=1

xi ⋅ wi

y = f (v)

(2)

where f = activation function, b = bias, w = weights, x = input
to neuron, n = the number of inputs from the incoming layer,
and v refers to the linear operation that is applied to each and
every neurons in the model. After the linear operation, an acti-
vation function is applied to all neurons in a layer to adapt to
the system’s non-linearity and restrict the output values within a
certain limit defined by that particular activation function type.
In hidden layers, we have chosen tanh activation function since
it gave us better performance while experimenting with several
activation functions such as ReLU and Leaky ReLU. The tanh

activation limits the output from −1 to +1 as shown in Equa-
tion (3).

f (v) = tanh (v) =
ev − e−v

ev + e−v
(3)

For a multi-class classification model like what we are deal-
ing with, Softmax activation function is an optimal choice in the
output layer. It returns the probabilities of each class through
which the target class is determined, having the highest proba-
bility close to one [35]. The mathematical equation is given in
Equation (4).

ŷ j = f
(
v j

)
=

ev j

∑K

j=1 ev j

; j = 1, 2, 3, …K (4)

where K is the total number of output classes, and ŷ j denotes
the prediction for j th class.

One pass of the full training set through the model is termed
as one epoch. We divided the whole dataset for both vowel and
word into a training set of 80% and a validation set of 20%. In
each epoch, all of these trainable parameters are slightly changed
towards the best values by minimizing the loss function. This
loss function is actually a measure of the difference between the
actual output and predicted output. We have used categorical cross-

entropy loss function as defined by Equation (5).

Loss = −

K∑

j=1

y j ⋅ log ŷ j (5)
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where y j is the ground-truth or target value, and ŷ j denotes
the prediction made by the model for j th class. More devi-
ation between these two will result in a higher loss score.
The key technique behind optimizing a DNN is to use this
score as a feedback signal to fine-tune the trainable parame-
ters gradually to reduce this loss score. An optimizer makes
this adjustment through which it implements the fundamen-
tal Backpropagation algorithm. The optimizer used in this work
is Adam with a learning rate of 0.005. It is one of the heav-
ily used optimization algorithms in the deep learning domain
[36, 37].

The number of trainable parameters in the DNN model
depends on the number of input neurons. Each neuron has
a weight parameter and bias parameter corresponding to the
preceding layer. For a fully connected network (Figure 3), the
number of trainable parameters of a particular layer is defined
according to Equation (6).

TPl = nl × nl−1 + nl (6)

where nl refers to the number of neurons on layer l , nl−1
refers to the number of neurons on the preceding layer of
l , and TPl refers to the total trainable parameters at layer l .
The term (nl × nl−1) denotes the number of weight param-
eters, and the last term (nl ) denotes the number of bias
parameters.

2.3.2 Evaluation metrics

To measure the performances of the classification, we uti-
lized five different metrics—classification accuracy, area under
curve of receiver operating characteristic (AUC-ROC), F1
score, Cohen’s 𝜅, and confusion matrix. Classification accuracy
denotes the correct classification rate for all classes. AUC-ROC
is a better evaluation metric, especially when the number of sam-
ples at different classes is different. On top of these, some other
metrics named Precision is the ratio of the number of correctly
classified labels to all predictions the model picked as correct,
including those not identified correctly, and Recall is the ratio of
the number of correctly classified labels to all labels that should
have been classified correctly (i.e. all ground truths). In most
cases, an inverse proportional relationship exists between Pre-
cision and Recall, and therefore, a harmonic mean of these two
metrics gives a better estimate of the model’s performance. This
metric is known as F1 score or F-measure which is calculated
according to Equation (7).

F1 score = 2 ×
Precision × Recall
Precision + Recall

(7)

Cohen’s 𝜅 is a statistical metric that represents the perfor-
mance of the classifier other than arbitrary assumption [38].
According to Landis and Koch [39], a value of less than
zero tells that the model is giving a random guess; a value
of 0.81 to 1.00 implies an almost perfect model; a value of

0.61 to 0.8 indicates a substantial-good model, and so on.
For all these four evaluation metrics or accuracy indexes, a
higher value indicates better performance. Lastly, the confu-
sion matrix tells us the classification performance in terms of
individual classes, and it is related to Precision, Recall, and
F1 score.

Different performance metrics have different pros and cons,
and a model’s performance should not be justified based on a
single metric. That is why we have considered all these five per-
formance metrics. We have utilized the K-fold cross-validation
technique in which the total dataset is split into K number of
folds. In each run, (K−1) folds are used to train the model, and
the remaining single fold is used to validate the model. Thus,
K runs are required to traverse all the folds in total, and then
we use the average performance of all of these folds as a cross-
validated evaluation metric.

2.4 Overall workflow

The key steps involved in this work are mentioned below.

1. The datasets presented in Section 2.1 (Speech collection and
dataset preparation) are processed according to Section 2.2
(MFCC extraction and standardization), through which we
extracted standardized MFCC features.

2. The standard features are then fed to the classification model
described in Section 2.3 (Deep neural network model). We
performed the following three experiments:
(a) To seek the optimum number of MFCCs, we gradu-

ally increased the numbers of MFCC features from 8 to
28 for both vowel and word classification in the two-
hidden-layered network presented in Figure 3.

(b) As we have already discussed in Section 1 (Introduction)
that both increasing the number of MFCCs and hidden
layers raises the computational burden while enhancing
the classification performance, this research also aims
to find which increment is more suitable. For this pur-
pose, we have increased the number of hidden layers and
calculated the classification metrics. Then both metrics
(obtained by increasing the number of MFCCs and hid-
den layers) are compared based on the number of train-
able parameters.

(c) Finally, to elicit the best possible score, we have uti-
lized the optimum number of MFCCs found in item
2a and then experimented by increasing the num-
ber of hidden layers and the number of neurons in
them.

3 RESULTS AND DISCUSSION

This section reports and explains the findings of this article. In
general, we first seek the optimum number of MFCC, then we
analyze between hidden layer increase and MFCC increase, and
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TABLE 1 Performance comparison with respect to the variation of the number of MFCC features for both vowel and word classification

Type MFCCs Parameters Accuracy AUC-ROC F1 score Cohen’s 𝜿

Vowel 8 935 0.66 (± 0.01) 0.94 (± 0.00) 0.65 (± 0.01) 0.61 (± 0.01)

10 999 0.70 (± 0.01) 0.95 (± 0.00) 0.68 (± 0.01) 0.64 (± 0.01)

12 1063 0.71 (± 0.01) 0.95 (± 0.01) 0.71 (± 0.01) 0.67 (± 0.01)

13 1095 0.74 (± 0.02) 0.96 (± 0.00) 0.73 (± 0.02) 0.69 (± 0.02)

14 1127 0.75 (± 0.02) 0.96 (± 0.00) 0.74 (± 0.02) 0.71 (± 0.02)

16 1191 0.78 (± 0.01) 0.97 (± 0.00) 0.78 (± 0.01) 0.74 (± 0.01)

18 1255 0.80 (± 0.00) 0.97 (± 0.00) 0.80 (± 0.00) 0.77 (± 0.00)

20 1319 0.82 (± 0.01) 0.98 (± 0.00) 0.82 (± 0.01) 0.79 (± 0.01)

22 1383 0.83 (± 0.01) 0.98 (± 0.00) 0.82 (± 0.01) 0.80 (± 0.01)

24 1447 0.84 (± 0.00) 0.98 (± 0.00) 0.84 (± 0.00) 0.81 (± 0.01)

25 1479 0.83 (± 0.01) 0.98 (± 0.00) 0.83 (± 0.01) 0.81 (± 0.01)

26 1511 0.83 (± 0.01) 0.98 (± 0.00) 0.82 (± 0.01) 0.80 (± 0.01)

27 1543 0.84 (± 0.00) 0.98 (± 0.00) 0.84 (± 0.00) 0.81 (± 0.00)

28 1575 0.84 (± 0.00) 0.98 (± 0.00) 0.84 (± 0.00) 0.82 (± 0.00)

Word 8 935 0.46 (± 0.00) 0.83 (± 0.00) 0.44 (± 0.00) 0.37 (± 0.00)

10 999 0.47 (± 0.01) 0.84 (± 0.01) 0.45 (± 0.01) 0.38 (± 0.01)

12 1063 0.49 (± 0.01) 0.85 (± 0.00) 0.47 (± 0.01) 0.40 (± 0.01)

13 1095 0.51 (± 0.01) 0.86 (± 0.00) 0.49 (± 0.01) 0.42 (± 0.01)

14 1127 0.52 (± 0.01) 0.86 (± 0.00) 0.51 (± 0.01) 0.44 (± 0.01)

16 1191 0.51 (± 0.00) 0.86 (± 0.00) 0.50 (± 0.00) 0.43 (± 0.01)

18 1255 0.53 (± 0.01) 0.87 (± 0.00) 0.52 (± 0.01) 0.45 (± 0.01)

20 1319 0.54 (± 0.01) 0.87 (± 0.00) 0.52 (± 0.01) 0.46 (± 0.01)

22 1383 0.55 (± 0.00) 0.88 (± 0.00) 0.54 (± 0.00) 0.47 (± 0.00)

24 1447 0.56 (± 0.01) 0.88 (± 0.00) 0.55 (± 0.01) 0.48 (± 0.01)

25 1479 0.57 (± 0.01) 0.88 (± 0.00) 0.56 (± 0.01) 0.49 (± 0.01)

26 1511 0.56 (± 0.01) 0.88 (± 0.00) 0.55 (± 0.01) 0.48 (± 0.01)

27 1543 0.57 (± 0.01) 0.88 (± 0.00) 0.56 (± 0.01) 0.49 (± 0.01)

28 1575 0.56 (± 0.00) 0.88 (± 0.00) 0.56 (± 0.00) 0.49 (± 0.00)

Note: The parameters represent the total number of trainable parameters. It denotes that twenty-five MFCCs seems optimum for both vowel and word classification. For this whole
comparison, we trained the model for 50 epochs in the DNN configuration of two hidden layers shown in Figure 3 with all random initialization fixed to a seed value of 42.

finally, we seek the best classification performance, followed by
a comparison with related studies.

3.1 Search for optimum number of MFCC

The architecture depicted in Figure 3 is utilized for demon-
strating performances for a varying number of MFCC for both
vowel and word classification. Table 1 reports a detailed com-
parison with respect to the variation in the number of MFCC
features for both vowel and the word classification.

Since the performance of the model may vary at different
runtimes, we utilized four-fold cross-validation, and the average
scores of these four runtimes are shown in Table 1 along with
the standard deviation in parentheses. While comparing, all ran-
dom initializations are fixed from a constant seed value of 42.

This technique ensures the reproducibility of identical perfor-
mance scores in multiple runtimes. For this comparison table,
the two-hidden-layered network was trained for 50 epochs.

For both vowel and word classification, the performance
scores increase with an increasing number of MFCCs. For vowel
classification, they were highest for 24 MFCCs in input, whereas
for word classification, the highest scores of the same metrics
were observed for 25 MFCCs in input. From 13 MFCCs to
25 MFCCs, vowel shows 0.83 − 0.74 = 0.09 that is 9%, and
word shows 0.57 − 0.51 = 0.06 that is 6% increase in over-
all accuracy. It is seen from Table 1 that 24 MFCCs takes less
parameters and provides better accuracy and F1 score for vow-
els, and provides lower accuracy, F1 score, and Cohen’s 𝜅 for
words compared to 25 MFCCs, although the difference is much
smaller. One can use either 24 or 25 MFCCs for their evaluation,
but we choose 25 MFCCs for being consistent.
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TABLE 2 Performance comparison with increasing the number of hidden layers at 13 MFCCs. The model was cross-validated (four-fold) and trained for 50
epochs

Type Model Parameters Time (s)c Accuracy AUC-ROC F1 score Cohen’s 𝜿

Vowel HL2
a 1095 5.40 0.74 (± 0.02) 0.96 (± 0.00) 0.73 (± 0.02) 0.69 (± 0.02)

HL3
b 3623 5.88 0.79 (± 0.01) 0.97 (± 0.00) 0.79 (± 0.01) 0.76 (± 0.01)

Word HL2 1095 5.83 0.51 (± 0.01) 0.86 (± 0.00) 0.49 (± 0.01) 0.42 (± 0.01)

HL3 3623 6.29 0.55 (± 0.01) 0.89 (± 0.00) 0.55 (± 0.01) 0.48 (± 0.01)

aHL2: Two hidden layers having 32-16 neurons
bHL3: Three hidden layers having 64-32-16 neurons
cTime (s): The execution time (in seconds) of both the training and validation phase together.

3.2 MFCC increase versus hidden layer
increase

It is apparent that increasing the number of hidden layers
should also increase the performance, and that is why we per-
formed the same classification experiment with three hidden
layers (Table 2), and as expected, the performance increased.
However, the use of three hidden layers increases the number of
trainable parameters, thereby increasing computational burden,
which is a crucial limit in implementing speech recognition
systems in end devices, such as microcontrollers and Arduino.
The table also reports total execution time (both training and
validation phase together) in an HP Pavilion 14 laptop with
64-bit Linux Mint 19.3 OS, 8 GB RAM, 1.7 GHz Intel Core
i5-4210U Processor, and NVIDIA GM108M [GeForce 830M]
2 GB Graphics.

As shown in Table 2, for vowel classification employing 13
MFCCs, two hidden layers to three hidden layers introduce 5%
increase in accuracy, 1% increase in AUC-ROC, 6% increase in
F1 score, and 7% increase in Cohen’s 𝜅. At the same time, these
performance increases require 3623 − 1095 = 2528 additional
trainable parameters. Similar increases of performances in three
hidden layers is comparable to 16 or 17 MFCCs of Table 1.
Therefore, if we increase the number of MFCCs to increase
the performances, it would cost only 1191 − 1095 = 96 addi-
tional trainable parameters. As compared to execution time,
16 MFCCs required only 5.53 s which is also less than the exe-
cution time in three-hidden-layered configuration (HL3). Com-
paring these additional parameters in two cases, we can com-
ment that increasing MFCCs is computationally efficient than
increasing hidden layers since more trainable parameters require
more time and computational power to do the classification.
Word classification also depicts similar results. An increase of
4% classification accuracy can be done either by additional 2528
parameters if we want to increase the number of hidden layers
or by additional 1383 − 1095 = 288 parameters if we want to
increase the number of MFCCs to 22. As for execution time,
22 MFCCs took only 5.75 s, less than what it took for HL3.
Accordingly, this guides us to increase the number of MFCCs
rather than the number of hidden layers. The analysis further
suggests that the optimum number of MFCCs could be 24 or
25, although the optimum number of MFCCs is well known to
be 13.

TABLE 3 Best performance scores with increasing the number of hidden
layers at 25 MFCCs. The evaluation metrics are four-fold cross-validated

Type Model Accuracy AUC-ROC F1 score Cohen’s 𝜿

Vowel HL2
a 0.96 (± 0.00) 1.00 (± 0.00) 0.96 (± 0.00) 0.95 (± 0.00)

HL4
b 0.99 (± 0.00) 1.00 (± 0.00) 0.99 (± 0.00) 0.98 (± 0.00)

HL5
c 0.99 (± 0.00) 1.00 (± 0.00) 0.99 (± 0.00) 0.98 (± 0.00)

Word HL2 0.75 (± 0.01) 0.96 (± 0.00) 0.75 (± 0.01) 0.71 (± 0.01)

HL4 0.89 (± 0.01) 0.98 (± 0.00) 0.89 (± 0.01) 0.87 (± 0.01)

HL5 0.91 (± 0.01) 0.98 (± 0.00) 0.91 (± 0.01) 0.90 (± 0.01)

aHL2: Two hidden layers having 32-16 neurons
bHL4: Four hidden layers having 128-64-32-16 neurons
cHL5: Five hidden layers having 128-128-64-32-16 neurons

In a search for the optimum number of MFCCs in English
and Portuguese digit classification, Silva et al. [28] report a
decrease in performance after 25 MFCCs, and they concluded
that the optimum number of coefficients has a narrow range
between 11 to 23 MFCCs. Our findings also comply with it.
The authors in [12] also experimented by varying the number
of MFCCs and other parameters to find the best configuration
for a low-resource embedded system. They experimented with
8, 9, and 10 MFCCs, and concluded that 9 MFCCS are suitable
in accordance with other parameter tuning such as the number
of filters and number of HMM states. A significant reason
behind choosing nine MFCCs was less training and recog-
nition time, particularly for low-resource embedded systems
they considered.

3.3 Search for best scores

The classification performances have a proportional relation-
ship with the number of MFCCs and the number of hidden
layers. According to the previous discussions (Section 3.2), for
enhancing the classification score, we have to first concentrate
on incorporating the optimum number of MFCC, and then,
we should extend the number of hidden layers. As we already
concluded that 25 MFCCs would be the optimum number of
MFCCs, we increased the number of hidden layers while utiliz-
ing 25 MFCCs shown in Table 3.

While increasing the number of hidden layers, we found five
hidden layers as optimum since performance scores did not
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FIGURE 4 Loss minimization and accuracy score during training and validating using MFCC features. The classification model consists of five hidden layers

FIGURE 5 Confusion matrices for the vowel and the word classification. It indicate the classification performances of individual vowels and words

increase for six and more hidden layer configurations. We also
checked with a varying number of hidden neurons in the config-
urations shown in Table 3, but the reported configurations were
found optimum. Finally, we trained the model for 300 epochs to
extract the best possible scores, which resulted in 99% and 91%
classification accuracies for vowels and words, respectively.

For the best scores, Figures 4a and 4b depict the loss min-
imization and accuracy score curves during both training and
validation phases for both vowel and word classification, respec-
tively.

Since there is no large difference between training and valida-
tion curves for vowel classification, the model is not overfitting.
The smoother curves for vowel classification (Figure 4a) indi-
cate proper tuning of model hyperparameters. It further means

that the formation of the DNN classifier is good enough to have
such a good model. However, for word classification, there are
some differences between training and validation losses shown
in Figure 4b. A possible reason behind this is the presence of
more dynamic acoustical features in words [40].

Classification performance for individual labels can be iden-
tified from the confusion matrices shown in Figure 5. The top-
left to bottom-right diagonal elements in the matrix represent
the accurate classification rate for respective classes.

As shown from the matrix, vowel classification was perfect
with 100% accuracy for / /[/ /], / /[/a/], / /[/u/], and
/ /[/e/] vowels. The class that had the lowest accuracy with
this model was / /[/i/], and it was 97% correct. On the con-
trary, the model’s best performance for the word classification
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TABLE 4 Comparison with relevant studies based on the used number of MFCCs and reported classification accuracy. The comparison proves the
competitiveness of our classification model with 25 MFCCs, whereas the general wisdom is to use 13 MFCCs

Model Article Recognition Domain MFCCs Accuracy

DNN Proposed Seven Bengali vowels 25 99%

[24] Three Arabic words 13 92.42%

Proposed Seven Bengali words 25 91%

[21] English phonemes Not specified 90.77%

[25] English command words 13 82.46%

[18] Bengali speech characters Not specified 81.61%

[22] Malayalam Vowels 12 74.39%

CNN [13] 10 spoken Bengali digits Not specified 98.37%

[26] Isolated English words Not specified 96.19%

[7] Nigerian accent classification 40 94.9%

[40] Isolated Bengali vowels 13 93.93%

[40] Isolated Bengali words 13 90 %

[23] Dari speech tokens 13 88.2%

[16] Isolated Bengali speech Not specified 86.058%

[17] Ten Bengali short speech words 13 74.01%

SVM [27] Speech emotion 13, Δ, Δ − Δ 90%

CMUSphinx [14] Bengali word 13, Δ, Δ − Δ 85.3%

[15] Bengali speech 13, Δ, Δ − Δ Not specified

HTK [14] Bengali phoneme 13, Δ, Δ − Δ 54.07%

CMUSphinx: Open source speech recognition system developed at Carnegie Mellon University
CNN: Convolutional neural network
DNN: Deep neural network
HTK: Hidden Markov model toolkit
SVM: Support vector machine
Δ: First derivatives of 13 base MFCCs
Δ − Δ: Second derivatives of 13 base MFCCs

was for the word, and it was 97% correct. For all other
words, the model’s performance was quite satisfactory with an
87% classification rate as the lowest found for word.

3.4 Comparison with other studies

Our main target was to investigate the number of MFCC fea-
tures required to achieve the best classification performance.
Table 4 reports some relevant studies, where at first, we present
the DNN-based studies, then the CNN-based studies followed
by other approaches. In each category, we ordered the arti-
cles according to the highest classification performance to the
lowest.

Table 4 reveals that most of the speech classification
researches employ either DNN or CNN, which is the extended
version of DNN architecture added with convolutional layers.
Several studies also utilize the first and second derivatives of 13
base MFCCs to consider the temporal dynamics of the speech
signal [9]. Since the recognition domain and datasets are dif-
ferent, we should not strictly compare the classification per-
formance among these studies. However, competitive classifi-
cation performance proves the applicability and suitability of
our model. There are two concrete outcomes from this table—

most articles utilized only 13 base MFCCs where our research
recommends 24 or 25 MFCCs, and our classification accuracy
outperforms state-of-the-art scores on vowel recognition. Also,
our word classification accuracy is competitive to similar studies.

4 CONCLUSION

Speech is a significant natural source of information used in
many aspects—speech dictation gadgets, accent classification,
emotion recognition, and disease diagnosis, to name a few.
Therefore, speech-related researches have a meaningful impact
on our day-to-day life. Since audio data cannot be processed
directly in many cases, researchers extract valuable informa-
tion from the audio, what we call feature extraction. Among
many features, MFCC has been widely used by researchers all
over the world. Although it is a general wisdom to use the
first 13 coefficients, we put a test to answer the question—
how many MFCCs are to be utilized? We performed the clas-
sification of seven Bengali vowels and seven Bengali words by
varying MFCC numbers from 8 to 28. In a two-hidden-layered
DNN model, 13 MFCCs gave 74% vowel and 51% word clas-
sification accuracy, whereas 25 MFCCs gave 83% vowel and
57% word classification accuracy, from which we recommend
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that 25 MFCCs could be the optimum number of MFCCs. In
fact, the general wisdom of 13 MFCCs could serve the same
performance score if we increase the number of DNN hid-
den layers. However, it increases the total trainable parameters
(computational burden), a limiting factor to implement speech
recognition systems in edge devices like Arduino. With the opti-
mum number of MFCCs discovered in this study, we further
seek the best possible scores by increasing the hidden layers.
Accordingly, in a five-hidden-layered model, we obtain 99%
vowel and 91% word classification accuracy that is competi-
tive to other similar speech classification studies. The outcome
of this study will be helpful for future MFCC-based researches.
Employing the optimum number of MFCCs should increase the
overall performance of devices, systems, and research involving
MFCC.
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