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Abstract

Although speech recognition has achieved significant success using integrated and

efficient models, still some series of challenges remain as linguistic-acoustic patterns

are perturbed by speakers' individual articulation gestures and environmental noises.

Due to dynamic changes in the vocal tract cavity, word utterances yield temporal and

perturbed linguistic-acoustic features, whereas vowel utterances yield less-perturbed

quasi-stationary features. To recognize patterns as in vowels and words, the basic

feedforward neural network (NN), among other methods, responds to these vocal

tract-induced variabilities and has shown promising results because of its simple yet

effective modelling of nonlinear data. We, therefore, present a comprehensive study

on how these variabilities of acoustical features affect the speech token classification

performances using NNs. We chose vocal tract resonance (formant frequency) as

linguistic-acoustic feature. Our statistical evaluation of vocal tract-induced variabil-

ities in seven Bengali vowels and words revealed that words have more variations

than vowels. We used four-fold cross-validation in an NN with Adam optimizer to

compute classification performances using five different metrics. Our experiments

found that formant transitions and dispersions do not contribute to classification,

and five-hidden-layered NN is optimum. In all different test cases, we justified our

hypothesis—word classification falls behind vowel classification due to the variability

induced by vocal tract dynamics. The optimum NN with 28,263 trainable parameters

achieved the highest accuracy and AUC scores: 0.89 and 0.99 in vowels, and 0.64

and 0.91 in words.
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Bengali speech classification, formant frequency, neural network, speech variability, vocal
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1 | INTRODUCTION

Humans have God-gifted potential to recognize spontaneous or natural spoken languages with the highest accuracy, whereas implementing such

capability in machines is not straightforward. In recent years, advanced models like neural networks (NNs) with necessary training data have made

compelling achievements in less-natural read speech recognition technologies. However, similar accomplishments are not achieved in spontane-

ous speech recognition because non-linguistic spontaneous variables contaminate linguistic-acoustic variables, such as vocal tract resonance

Abbreviations: AUC-ROC, area under curve of receiver operating characteristic; CNN, convolutional neural network; COV, coefficient of variation; FN, false negative; FP, false positive; GMM,

Gaussian mixture model; HMM, hidden Markov model; MFCC, Mel-frequency cepstral coefficient; NN, neural network; TN, true negative; TP, true positive.
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frequency, fundamental frequency, and sound intensity (Deng & Ma, 2000; Deng et al., 2020). Non-linguistic variables originate from speakers'

age, gender, emotion, region, culture, and vocal tract length (MacFarlane & Hay, 2015). Recognition of spontaneous, conversational speech

requires consideration of internal structural information or generative mechanisms rather than only surface-level information. If only surface-level

information is considered, theoretically infinite information is required to completely cover the overwhelming variability (Deng & Ma, 2000).

Therefore, speech recognizer design must consider the variability induced by the vocal tract dynamics (Mitra et al., 2017).

Speech production overlaps comparatively stable vowels with dynamic consonantal articulation-related gestures of the vocal tract

(Öhman, 1966, 1967). To infuse information in speech, the change of the vocal tract cavity with time is called vocal tract dynamics, which can be

modelled by various time-varying filterings such as formant frequency, linear predictive coding, and Mel-frequency cepstral coefficient (MFCC).

Formant frequencies refer to the resonant frequencies of the human vocal tract while producing speech. The formant trajectories of words are

dynamic due to consonantal constrictions, whereas for vowels, these are quasi-stationary. These dynamic formant trajectories in words are more

perturbed by the variations of speakers' vocal tract shapes than the quasi-stationary vowels. However, these dynamic articulatory activities are

essential for conveying information to other humans and machines through speech tokens. In addition to the information transmission, these

articulation dynamics can help describe neurological diseases such as Parkinson's disease (G�omez-Vilda et al., 2017) and Alzheimer's disease

(Gosztolya et al., 2019). These diseases cause vocal tract variation that results in acoustical feature variation. Therefore, correct estimation of

these vocal tract variations using classification performance might help diagnose these diseases.

In previous decades, most speech researchers employed statistical hidden Markov models (HMMs) to consider the temporal variability of

speech and Gaussian mixture models (GMMs) to map the HMM states to the acoustic input features (Hinton et al., 2012; Jelinek, 1976;

Young, 2008). Although GMM-HMM models have several advantages, NNs continuously replace their places by overcoming several significant

shortcomings. In particular, HMM assumes the speech features as statistically independent, disregarding any possible correlation among individual

features. Additionally, HMM strongly depends on the arbitrary assumption of probability density function associated with states (Trentin &

Gori, 2003). GMM also has some disadvantages, including statistical inefficiency for nonlinear data space (Hinton et al., 2012). On the other hand,

NN can successfully model nonlinear data (Hinton et al., 2012), and it is heavily used in pattern recognition tasks (Bishop, 2006; Looney, 1997).

Several studies proved that NN with many hidden layers outperforms GMM-based models by a large margin in various speech recognition bench-

marks (Hinton et al., 2012; Mohamed et al., 2012; Pan et al., 2012). Among several variants of NN architectures, feedforward NN is simple yet

effective in pattern recognition tasks (Touvron et al., 2021). Moreover, other architectures—mostly derived from feedforward NN—might relegate

vocal tract-induced variabilities, but the effect of these variabilities on speech token classification was the main focus of this article. We, there-

fore, selected feedforward NN to investigate the effects of vocal tract dynamics.

Through lifelong learning, humans adapt vocal tract-induced variabilities in recognizing speech. Based on the classification performance, direc-

tions into velocities of articulators (Guenther, 1994), task dynamics (Saltzman & Kelso, 1987), state feedback control (Houde & Nagarajan, 2011), and

feedback aware control of tasks in speech models were formulated for computational speech-motor movement. These models are prominent in

hearing impairment, stuttering, and phonatory learning. A well-trained NN as a speech token classifier considering perturbed formant can be inte-

grated effectively into the acoustics to sound mapping tool in the auditory feedback module of these models.

According to Tripathi et al. (2020), vocal tract features achieve better speech classification than excitation source features. Although vocal

tract dynamics play a significant role in speech classification, research reports, especially investigations on performance deviation due to vocal

tract dynamics—either using GMM-HMM or NN classifier—are rarely found. Yang et al. (2020) and Sharmin et al. (2020) demonstrated speech

token classification without explaining why such classification performances are achieved. Our previous work reported MFCC-based classification

performance differences (Hasan & Hasan, 2020); this current article presents a comprehensive study on how vocal tract dynamics affect classifi-

cation performance. We experimented with several variations in a feedforward NN model and input features (formant frequency). We, therefore,

are also reporting the relative importance of formant frequency and its derived features (i.e., which features contribute more to speech recogni-

tion). This article discusses different NN configurations' relegation scenarios of vocal tract-induced acoustic perturbation. The main contribution

of the articles is the numerical investigation of the effect of vocal tract dynamics on the NN-based speech classification performance. In this

aspect, the present article shows how the classification performance varies with the number of NN layers and parameters. Secondly, considering

Bengali pronunciation's regional diversity, we found the optimum NN structure for classifying speech tokens. Finally, we report that formant tran-

sitions and dispersions have no vital contribution to vowel and word classification, although canonical correlation-based studies reported their

significance.

We chose Bengali because it is the sixth most spoken language globally, and it has 267.7 million total users worldwide, including 228.7 million

native speakers (Eberhard et al., 2021). Popular speech-to-text recognizers (e.g., Google Assistant, Apple Siri, Microsoft Cortana, and Amazon

Alexa) support Bengali either to some extent or not at all, which needs improvement for efficient real-time usage.

The paper is structured as follows. Related works are discussed in section 2. Starting from the data collection and ending with the NN model

configuration, the whole methodology, including estimating dynamic acoustical variability, is illustrated in section 3. We then present the results

of speech classification with particular emphasis on observed classification performance deviation in section 4. Lastly, we summarize the article

with possible future works in section 5.
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2 | LITERATURE REVIEW

The laryngeal energy triggers the resonance with a frequency below 5 kHz in most cases, so these first five formants are usually considered as

speech features (Kent & Read, 2001). These hold crucial acoustic information, and accordingly, many researchers have been utilizing formant fre-

quency to classify vowels and words. For example, Yan and Vaseghi (2003) used the first four formant frequencies to classify British, American,

and Australian accents, reporting that formant frequency plays a significant role in classifying accents. Story and Bunton (2010) adopted the first

three formant frequencies and their transitions in a study on articulation, revealing that these transitions contribute to the overall changes in the

vocal tract shape at the time of speech production. They also provided direction that the time derivative of these transitions (basically the second

derivative) would estimate the contributions of both vowels and consonants to the variation of vocal tract dynamics. Kent and Read (2001)

emphasized formant transitions as an essential acoustic cue for speech perception, where second and third formant transitions are related to the

place of production of a particular speech. Accordingly, exploring formant transitions (time derivative of formants) might be useful and, therefore,

were utilized in our study.

Along with the five formants and their transitions, we used their dispersions (difference between formant pairs), which several studies also

utilized as prominent features. Among these, L�opez et al. (2013) used 12-dimensional feature vectors, and Hasan et al. (2015) used 9-dimensional

feature vectors. These research groups employed the first five formants and four dispersions between two different formants pairs each time.

Yusof and Yaacob (2008) used the first three formant frequencies and dispersions between them to classify Malaysian vowels, where they

reported improvement for most of the vowels' classification when corresponding formant dispersions were incorporated. Some other studies also

classified vowels by combining the three lowest formants and computed dispersions (Hillenbrand & Gayvert, 1993; Vuckovic & Stankovic, 2001).

Several notable works are available on speech classification; for example, Tripathi et al. (2020) classified speech mode (read and conversa-

tional) of four Indian languages—including Bengali—by employing vocal tract features in a single-layer feedforward NN model. Furthermore, they

employed vocal tract features in multi-layer NN-based phone recognition. Yang et al. (2020) classified 10 English command words using three

types of models, including feedforward NN and convolutional neural network (CNN). Similarly, Dawodi et al. (2020) classified 20 Dari speech

tokens employing CNN. Saha et al. (2018) demonstrated improved speech classification employing vocal tract shape dynamics. There are several

speech-token classification studies, particularly in the Bengali language. Sharmin et al. (2020) classified 10 Bengali spoken digits using CNN.

Syfullah et al. (2018) classified 45 Bengali characters (vowels and consonants) using NN. Sumon et al. (2018) classified 10 isolated Bengali words

using CNN. Mukherjee et al. (2018) classified seven Bengali vowels using a random forest algorithm. On top of these, Badhon et al. (2020) sum-

marized several research reports on Bengali speech recognition.

Analysis of articulatory feature variations has several biomedical applications as it can help diagnose several diseases (Damper, 1982).

Brabenec et al. (2017) utilized 14 combinations of speech tasks and acoustic features to diagnose Parkinson's disease. Hemmerling and Wojcik-

Pedziwiatr (2020) predicted and estimated the same disease based on English vowel sounds. Therefore, proper analysis of articulatory feature var-

iations is necessary for automatic speech recognition with biomedical applications. A unique application of NN-based consonant classification

was demonstrated by Anjos et al. (2020), where a game was developed for children to practice pronouncing those difficult consonants to alleviate

their pronunciation difficulties. Speech token recognition has several other applications: emotion recognition (Shahriar & Kim, 2019); voice assis-

tance in smartphones, laptops, and vehicles; home automation (Yuksekkaya et al., 2006); and assisting physically-challenged and old-age people

(Bolla et al., 2017; Qidwai & Shakir, 2012).

3 | METHODS

A sketch of the steps involved in analysing the effect of vocal tract dynamics and finding out the importance of different formant frequency fea-

tures is depicted in Figure 1. The following subsections explain the steps in detail.

3.1 | Preparation of datasets

To evaluate the effect of vocal tract dynamic properties, we captured seven Bengali vowel sounds (/অ/[/ɔ/], /আ/[/a/], /ই/[/i/], /উ/[/u/], /ঋ/[/ri/],

/এ/[/e/], and /ঐ/[/oi/]) and seven Bengali word sounds (/ /[/botala/]{bottle}, /বন/[/bana/]{forest}, /কিপ/[/kapi/]{copy}, / /[/dokana/]

{shop}, /েশষ/[/�seṣa/]{end}, /সিঠক/[/saṭhika/]{correct}, and /উপের/[/upare/]{above}). The above texts within the square and the curly brackets indi-

cate corresponding pronunciations and translations.

The Bengali language has 11 vowels. We selected seven of them, excluding two diphthongs and two longer versions of already selected two

vowels, which have the same pronunciations in the present day speaking. We aimed to compare vowel and word classification performance, so

we selected the same number of words. These seven specific words were selected because their pronunciation varies from speaker to speaker,

and we were studying the effect of variations.
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We selected 20 Bangladeshi speakers between the age range of 20–26 years whose native language is Bengali. The participants were univer-

sity students who belong to different regions of Bangladesh. The Bengali language has several regional dialects that are more prominent than age

group diversification. Thus, we diversified the dataset by including various regional volunteers. We guided the speakers to pronounce in two dif-

ferent accents—the normal one they use in their day-to-day life and any other regional Bengali accent they know about.

We recorded the sounds using the stereo-channel ‘sound recorder’ feature of a ‘Xiaomi Redmi 3’ smartphone at a sampling rate of

44,100 Hz in a normal environment (without noise suppressing environment). We then converted those stereo-channel sounds into mono-

channel sounds using version 2.2.2 of the Audacity software (Audacity Team, 2018). While recording, we guided the speakers to speak all sounds

in a continuous stream with a little pause between successive vowels/words so that we could easily separate those vowels/words later. We then

clipped all classes of vowels and words using the same software by observing the waveform and hearing it simultaneously, and finally, we saved

them as 32-bit float data-type in respective vowel/word classes. Eventually, we created both vowel and word datasets, with 40 utterances in each

of the seven classes for both vowels and words. All data are publicly available for research purposes at Hasan and Hasan (2021).

3.2 | Feature extraction

We extracted five formant frequencies (F1–F5) for each of the seven vowels and words by sampling every 6 ms interval in a window length of

25 ms using a PRAAT script (Boersma & Weenink, 2001). These formant frequencies obtained at 6 ms intervals will be called formant “samples”
throughout the manuscript. Additionally, four specific formant dispersions—the differences between a pair of formant frequencies—were calcu-

lated for all vowels and words according to Equation (1) to Equation (4).

F51¼F5�F1 ð1Þ

F43¼F4�F3 ð2Þ

F53¼F5�F3 ð3Þ

F54¼F5�F4 ð4Þ

Formant dispersion is how much a formant frequency deviates from another. For example, F51 is the positive difference between F5 and F1. The

differences are always positive since the minuends are higher-order formant frequencies than the subtrahends. Subtraction was applied to each

F IGURE 1 Steps involved in analysing the effect of vocal tract dynamics and finding out the importance of different formant frequency
features
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formant sample of all vowels and words. If a specific vowel/word has M samples in each formant frequency (F1,F2,…F5), any formant dispersion

of that vowel/word also has M values, as the above subtraction was applied in a sample by sample manner.

On top of these, we calculated five formant transitions across time by taking the second derivative with backward difference approximation

given in Equation 5.

F00
i ¼jFi�2Fi�1þFi�2 j ð5Þ

where i denotes a counter that goes from 1 to the total samples for each formant frequency. Applying the above equation to all five formants

(F1 to F5), we extracted five formant transitions to be used as features.

3.3 | Statistical measures

To calculate the variation of a particular formant of a particular vowel or word, at first, we calculated mean (μ) according to Equation (6), standard

deviation σð Þ according to Equation (7), and coefficient of variation (COV) for a single sound file according to Equation (8).

μj ¼

Pn
i¼1

xi

n
ð6Þ

σj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi�μj
� �2

s

n�1
ð7Þ

COVj ¼ σj
μj

ð8Þ

where xi ¼ formant samples, and n¼ total number of formant samples for the jth sound file. Considering N number of sound files N¼40ð Þ for that
particular vowel or word, we calculated the overall COV of that particular formant frequency using Equation 9.

COV¼

PN
j¼1

COVj

N
ð9Þ

3.4 | Neural network-based classification model

We utilized a feedforward NN architecture to classify quasi-stationary (vowels) and dynamic (words) speech tokens. Natural language processing

tasks require recurrent neural networks (e.g., long short-term memory) or more advanced big transformer models (e.g., bidirectional encoder rep-

resentations from transformers). It is worth mentioning that although we studied a natural language, our primary aim was to study the effect of

vocal tract dynamics on speech token classification rather than conventional language processing tasks (e.g., next-word prediction or text summa-

rization). Therefore, feedforward NN is more suitable than recurrent and transformer-based networks for our purpose.

We might have used CNN, but our primary aim might not be satisfied as CNN's convolution operation relegates vocal tract dynamics-induced

variabilities (Hasan & Hasan, 2020). Moreover, feedforward NN is a part of CNN architecture: these are placed after the initial convolution layers

for final prediction. Researchers are recently revisiting simpler feedforward NNs (also called multi-layer perceptrons) for classification tasks

(Touvron et al., 2021). We, therefore, selected a basic feedforward NN model to study vocal tract dynamics. A similar study on speech classifica-

tion (Tripathi et al., 2020) also used such a basic NN model. The following subsections explain the elements involved in the classification model.

3.4.1 | Feature standardization

Our extracted features had different ranges of values. Feature standardization or Z-score normalization transforms data to zero-mean and unit-

variance, which helps NNs and other machine learning algorithms converge faster (Grus, 2019). We, therefore, standardized all acoustical features

before feeding in their respective models according to Equation (10).
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x0c ¼
xc�xc
σc

ð10Þ

Here, the subscript c indicates we performed the above operation on each feature, where the features are five formants, five dispersions, and four

transitions. xc and σc denote the mean and the standard deviation of that feature, and x0c is the standardized features having a mean of zero and

variance of one. We supplied these normalized features in the input layer of the feedforward NN-based classification model.

3.4.2 | Model configuration

The number of neurons in the input layer depends on the number of input features. The model's seven output neurons were utilized to represent

seven speech classes: seven vowels in vowel classification and seven words in word classification. There could be one or multiple hidden layers

between the input and output layers. The number of hidden layers and the number of neurons in these hidden layers cannot be defined by any

hard and fast rule or formula. It varies based on the application area and can be best approximated by multiple experiments. We incremented the

number of hidden neurons and layers from a smaller value and simultaneously tracked the model's performance. The performance plateaued after

a specific number, which was optimum for our NN model.

We came up with five hidden layers as the optimum number in our experiments. Nevertheless, we are also reporting classifications using one,

two, three, four, and six hidden layers to justify choosing five hidden layers. We also varied the number of input feature vectors in classification.

We used four different sets of input features: only five input vectors (five formants), 10 input vectors (five formants and five dispersions), nine

input vectors (five formants and four transitions), and 14 input vectors (all features—five formants, five dispersions, and four transitions). We,

therefore, compared performances among combinations of five formant frequencies, five formant dispersions, and four formant transitions. The

architecture of the feedforward NN model having five hidden layers and five formants in input, particularly for vowel classification, is shown in

Figure 2.

Five neurons in the input layer were utilized to represent five formant frequencies (input feature vectors). When we employed all 14 feature

vectors (five formants, five dispersions, and four transitions), there were 14 neurons in the input layer. Similarly, when it was a word classification

model, the output classes were words rather than vowels shown in Figure 2.

The hyperparameters of the NN model, including the activation functions, optimizer, learning rate, loss function, batch size, and the number

of epochs, were set through experiments. We tested with a specific setting and checked how it performed in terms of classification accuracy.

Regarding the activation function, we came up with the tanh function for all hidden layers and the Softmax function for the output layer. After

several experiments with different optimizers, including Adadelta, SGD, RMSprop, and Adam, we found Adam (Kingma & Ba, 2015) with a learning

rate of 0:005 as the optimum optimizer. We used categorical cross-entropy as the loss function (Equation 11).

F IGURE 2 The architecture of the fully-connected feedforward neural network-based vowel classification model having five hidden layers.
Input neurons represent the five formant frequency features, and output neurons represent the seven output vowel classes
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Loss¼�
Xoutput size

j¼1

yj � logŷj ð11Þ

where yj is the ground truth or target value, and byj denotes the prediction made by the model for the jth class.

During the training phase, example input–output patterns are served to the model so that it can tune its trainable parameters to predict the

correct output class. Presentation of input features to the model can be either in sequential or batch mode. Sequential mode is also called stochas-

tic mode, where individual training samples are passed from the input node to the output node one at a time, and then the trainable parameters

are perturbed with respect to these individual sequences. It is optimal for larger datasets as it needs less computational power (Haykin, 2007). On

the other hand, batch mode training involves all samples to be passed at once, and the parameters are accordingly perturbed based on all training

samples as a whole. In our case, we chose batch mode training; the batch size was, therefore, the number of all training samples. After feature

extraction, the vowel dataset had 14,161 formant samples, and the word dataset had 19,687 formant samples. As we used a four-fold cross-vali-

dation technique (discussed in section 3.4.3), the batch size was three-fourths of these total samples. One complete pass through the whole train-

ing dataset is called one epoch. We trained and validated our model for 300 epochs since the performance plateaued after this number of epochs.

Weights and biases are the two trainable parameters whose best values are searched throughout the NN training phase. The number of

weights equals the number of connections between neurons of a layer and its preceding layer, whereas the number of bias parameters equals the

number of neurons in that particular dense layer. Since we utilized a fully connected network, all input neurons were connected to all neurons of

the first hidden layer, all neurons of the first hidden layer were connected to all neurons of the second hidden layer, and so on. The total weight

parameter (say, Wl) in a dense layer (say, l) can be found by multiplying the number of neurons (say, nl) by the number of input to that particular

layer (i.e., the number of neurons in the preceding layer, nl�1) shown in Equation (12). The total number of bias parameters (say, Bl) is equal to the

number of neurons (nl) of that particular layer l (Equation 13). Therefore, the total number of trainable parameters in a particular layer l can be

derived according to Equation 14.

Wl ¼nl�nl�1 ð12Þ

Bl ¼nl ð13Þ

Thus,the total trainable parameters¼WlþBl ð14Þ

Particularly for the NN model shown in Figure 2, the numbers of neurons from the input layer up to the output layer were 5, 128, 128, 64, 32,

16, and 7, respectively. Thus, the total number of trainable parameters, according to Equation (14),

was 5�128þ128ð Þþ 128�128þ128ð Þþ 128�64þ64ð Þþ 64�32þ32ð Þþ 32�16þ16ð Þþ 16�7þ7ð Þ¼28,263.

3.4.3 | Evaluation metrics

Some specific metrics are required to compare the performance between vowel and word classifications. We utilized five different metrics—

confusion matrix, classification accuracy, area under the curve of the receiver operating characteristic (AUC-ROC), F1 score, and Cohen's κ. These

were guiding tools to attain optimum NN for classifying dynamic and quasi-stationary speech tokens (i.e., words and vowels).

A typical confusion matrix shown in Table 1 has four primary elements. True positive (TP) are actual positive examples predicted as positive,

whereas false positive (FP) are actual negative examples predicted as positive. Similarly, true negative (TN) are actual negative predicted as nega-

tive, whereas false negative (FN) are actual positive cases predicted as negative by the classifier.

Several evaluation metrics can be defined from the confusion matrix (Davis & Goadrich, 2006), some of which are given in Equation (15) to

Equation (18).

Classification accuracy¼ TPþTN
TPþTNþFPþFN

ð15Þ

TABLE 1 Elements of a confusion matrix

Actual positive Actual negative

Predicted positive TP FP

Predicted negative FN TN
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True positive rate Precisionð Þ¼ TP
TPþFP

ð16Þ

False positive rate¼ FP
FPþTN

ð17Þ

Recall¼ TP
TPþFN

ð18Þ

Classification accuracy measures the correctness of classification: it gives a ratio of correct predictions (both TP and TN) to all predictions the

model made. Since the true label of the classes is known at both training and validation time, the algorithm compares the true label with the

predicted label to provide the accuracy score. The accuracy score cannot explain the whole scenario when the number of samples varies among

different classes. In that case, AUC-ROC measures the degree of separability among different classes. It is the area under the receiver operating

characteristic curve—a plot of true-positive rate versus false-positive rate.

Precision or true-positive rate is the ratio of the number of correctly classified labels to all predictions the model picked as correct (including

that are mistakenly predicted as correct); Recall or Sensitivity is the ratio of the number of correctly classified labels to all labels that should have

been classified correctly (i.e., all ground truths). In most cases, an inverse proportional relationship exists between Precision and Recall. Therefore,

a harmonic mean (Equation 19) of these two metrics—known as the F1 score or F-measure—computes the model's performance better by giving a

score proportional to the correct classification.

F1 score¼2�Precision�Recall
PrecisionþRecall

ð19Þ

Other than these derived metrics, the confusion matrix itself is used as another graphical metric that facilitates observing classification perfor-

mance with respect to individual labels or classes.

Cohen's κ is a statistical metric that measures the inter-rater agreement, telling us how much the classifier performs other than a model that

delivers just a random guess (Cohen, 1960). According to Landis and Koch (1977), a value of less than zero tells that the model gives a random

guess; 0.81–1.00 implies an almost perfect model; 0.61–0.8 indicates a substantial-good model, and so on.

A higher value implies better classification for all evaluation metrics mentioned above. However, these metrics' computed results vary due to

different reasons: random initialization of network parameters and data distribution between training and validation (i.e., what data belong to the

training phase and what data belong to the validation phase). Both of these (parameter initializing and data splitting) were randomly decided in

our experiments so that the classification performance could not be biased to initial parameters or input data distribution. The metrics' results,

therefore, changed at different runs. To accommodate these changes and not be biased, we used four-fold cross-validation, a well-known strategy

to combine performances of multiple runs in different settings (Refaeilzadeh et al., 2009).

4 | EXPERIMENTAL RESULTS AND DISCUSSION

The waveforms of the / অ/[/ɔ/] vowel and the / /[/botala/] word from our captured data are shown in Figure 3a,b, respectively.

Figure 3 depicts that the vowel waveform was relatively steady, but the word waveform fluctuated as it (word) consists of vowels and conso-

nants. The glottal pulse source energizes the quasi-stationary vocal tract while producing vowels, and so the vowel waveform becomes an approx-

imately steady-state waveform. On the contrary, while producing words, consonantal constrictions induce the vocal tract's transitional nature, so

the word waveform fluctuates (Figure 3b).

Formant trajectories usually illustrate the state of the transfer function of the vocal tract during speech production, and the dispersion of for-

mant trajectories exhibits the numerical values of vocal tract dynamics (Mitra & Hasan, 2016). For visual comparison, the formant trajectories of

the /অ/[/ɔ/] vowel and the / /[/botala/] word are shown in Figure 4a,b, respectively.

Between Figure 4a,b, a more dispersive nature was observed in words due to the presence of several consonantal constrictions during word

production. These consonantal constrictions in the vocal tract induce dispersive behaviour in vocal tract resonance and filtering properties. To

estimate the amount of vocal tract variation, we calculated the COV of all five formants of all vowels and words (Table 2).

The first formant had the highest dispersive nature, and the variation decreased for lower-order formants. Table 2 exhibits a sharp decrease

in variation from F1 to F4 for both vowels and words. The variations between F4 and F5, especially for vowels, were less discernible. Words' for-

mants had more variation than vowels, as proved by higher valued COVs.
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4.1 | Input features and hidden layers variation

We classified both vowels and words by varying the number of input feature vectors and hidden layers. Table 3 presents four-fold cross-validated

(average) scores with the standard deviations in parentheses.

Table 3 reports both vowel and word classification scores starting from a model of only one hidden layer. Having five formants in the input

layer, the vowel classification model achieved an accuracy of 0.76 and an AUC-ROC score of 0.96. With one by one increase in the number of hid-

den layers, performance increased till the five-hidden-layered model. The low scores of models with less than five hidden layers indicate the net-

work was under-fitted (since increasing the number of hidden layers to five increased the overall performance). Under-fitting refers that the number

of parameters was insufficient to completely cover the acoustical variabilities. The five-hidden-layered model with five formant features in the input

achieved the highest scores in the vowel classification. Moving to the six-hidden-layered model decreased vowel classification performance by 0.01

in all four metrics and increased word classification performance by 0.01 in two metrics (F1 score and Cohen's κ). Therefore, considering a single

optimum model for both vowel and word classifications, the five-hidden-layered model appeared optimum, achieving accuracy and AUC-ROC of

0.89 and 0.99 in vowel classification and 0.64 and 0.91 in word classification. Since the overall performance did not significantly increase in the

six-hidden-layered model, the model parameters of the five-hidden-layered model were adequate to overcome the acoustical variabilities.

It is worthwhile to mention that increasing the number of layers also increases the total number of trainable parameters; additional parame-

ters help the model understand input representations more thoroughly. Here is a caveat: more hidden layers increase the computational burden, a

crucial limit in implementing speech recognition systems in low-resource edge devices.

F IGURE 3 Waveshapes of a vowel and a word uttered by a particular speaker. The word waveshape shows more fluctuations than the
vowel. Here, “arbitrary unit” refers to the normalized sound amplitude that represents the amount of air compression (above zero) or rarefaction
(below zero) while producing the sound

F IGURE 4 Comparison of formant trajectories between a vowel and a word. Word formants deviate more compared with vowel formants
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Incorporating formant transitions and dispersions did not benefit classification: the performance scores were more or less equal in all four

cases (all features, except dispersions, except transitions, and formants only) for the same five-hidden-layered configuration (Table 3). On average,

classification performance was affected by the network's trainable parameters, not by the transitions and dispersions. However, canonical

TABLE 2 Coefficient of variation (COV) of the vowel and the word formant frequencies

Coefficient of variation (COV)

Speech F1 F2 F3 F4 F5

/অ/[/ɔ/] 0.2959 0.1823 0.1064 0.0668 0.0603

/আ/[/a/] 0.3443 0.0896 0.0853 0.0602 0.0599

/ই/[/i/] 0.3288 0.2575 0.0670 0.0536 0.0669

/উ/[/u/] 0.4756 0.2167 0.1558 0.0672 0.0719

/ঋ/[/ri/] 0.4230 0.3123 0.1077 0.0829 0.0874

/এ/[/e/] 0.3340 0.2063 0.0659 0.0451 0.0647

/ঐ/[/oi/] 0.3915 0.4939 0.1312 0.0623 0.0701

/ /[/botala/] 0.4623 0.3073 0.1633 0.1004 0.0869

/ বন/[/bana/] 0.6066 0.3503 0.2087 0.1226 0.1050

/কিপ/[/kapi/] 0.7004 0.4955 0.1813 0.1027 0.0969

/ /[/dokana/] 0.6829 0.3615 0.1936 0.1266 0.0926

/েশষ/[/�seṣa/] 0.9849 0.2661 0.1335 0.0847 0.0710

/সিঠক/[/saṭhika/] 0.9099 0.3926 0.1916 0.1133 0.0940

/উপের/[/upare/] 0.5334 0.4157 0.1753 0.1197 0.0932

Note: Higher values of COV denote higher variation in acoustical features (formant frequencies).

TABLE 3 Vowel and word classification performances in terms of cross-validated average scores (� standard deviation) at different numbers
of feature vectors and hidden layers

Features Layers Parameters Type Accuracy AUC-ROC F1 score Cohen's κ

5F HL1 1671 Vowel 0.76 (� 0.00) 0.96 (� 0.00) 0.76 (� 0.00) 0.72 (� 0.00)

Word 0.50 (� 0.01) 0.85 (� 0.00) 0.50 (� 0.01) 0.42 (� 0.01)

HL2 9479 Vowel 0.84 (� 0.00) 0.98 (� 0.00) 0.84 (� 0.00) 0.81 (� 0.00)

Word 0.57 (� 0.00) 0.89 (� 0.00) 0.57 (� 0.00) 0.50 (� 0.00)

HL3 11,335 Vowel 0.86 (� 0.01) 0.98 (� 0.00) 0.86 (� 0.01) 0.84 (� 0.01)

Word 0.61 (� 0.01) 0.90 (� 0.00) 0.60 (� 0.00) 0.54 (� 0.01)

HL4 11,751 Vowel 0.87 (� 0.01) 0.98 (� 0.00) 0.87 (� 0.01) 0.85 (� 0.01)

Word 0.61 (� 0.01) 0.90 (� 0.00) 0.61 (� 0.01) 0.54 (� 0.01)

HL5 28,263 Vowel 0.89 (� 0.00) 0.99 (� 0.00) 0.89 (� 0.00) 0.87 (� 0.00)

Word 0.64 (� 0.01) 0.91 (� 0.00) 0.63 (� 0.01) 0.57 (� 0.01)

HL6 32,423 Vowel 0.88 (� 0.00) 0.98 (� 0.00) 0.88 (� 0.00) 0.86 (� 0.00)

Word 0.64 (� 0.01) 0.91 (� 0.00) 0.64 (� 0.01) 0.58 (� 0.01)

5F, 5T HL5 28,903 Vowel 0.89 (� 0.01) 0.98 (� 0.00) 0.89 (� 0.01) 0.87 (� 0.01)

Word 0.63 (� 0.01) 0.90 (� 0.00) 0.63 (� 0.01) 0.57 (� 0.01)

5F, 4D HL5 28,775 Vowel 0.89 (� 0.00) 0.98 (� 0.00) 0.89 (� 0.00) 0.87 (� 0.00)

Word 0.64 (� 0.01) 0.91 (� 0.00) 0.64 (� 0.01) 0.58 (� 0.01)

5F, 5T, 4D HL5 29,415 Vowel 0.89 (� 0.00) 0.98 (� 0.00) 0.89 (� 0.00) 0.87 (� 0.01)

Word 0.64 (� 0.00) 0.90 (� 0.00) 0.64 (� 0.00) 0.58 (� 0.00)

Note: Best scores for each classification appear in bold. 5F: Five formant frequencies; 5T: Five formant transitions; 4D: Four formant dispersions. HL1: One

hidden layer having 128 neurons. HL2: Two hidden layers having 128 and 64 neurons, respectively. HL3: Three hidden layers having 128, 64, and 32

neurons, respectively. HL4: Four hidden layers having 128, 64, 32, and 16 neurons, respectively. HL5: Five hidden layers having 128, 128, 64, 32, and 16

neurons, respectively. HL6: Six hidden layers having 128, 128, 64, 64, 32, and 16 neurons, respectively. Parameters: Total number of trainable parameters

in corresponding classification models.
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correlation-based studies (Hasan et al., 2015; L�opez et al., 2013) reported a significant influence of dispersions in classification. Our study proves

no impact of transitions and dispersions on speech classification; the most plausible explanations are (1) the hidden layers and neurons extract the

underlying dispersion and transitional relationship from the five formant features, and (2) the NN optimization algorithm further compensates the

necessity of including the formant transitions and dispersions. This research, therefore, reveals that the number of hidden layers should be

extended instead of incorporating formant transitions and dispersions.

4.2 | Graphical comparison between vowel and word classification

From our previous discussions, the optimum number of hidden layers appeared to be five, and formant dispersions and transitions appeared

unnecessary. We, therefore, utilized that five-hidden-layered configuration with only formant frequencies to graphically illustrate training curves,

validation curves, and performance comparisons between vowel and word classifications in terms of loss and accuracy (Figure 5).

According to Stanford University's CS231n course materials,1 a diffuse probability of 1=7 is expected for each class since we had seven out-

put classes. Thus, the initial loss is expected to be �ln 1=7ð Þ¼1:95. Moreover, since the initial loss value came from NN parameters' random ini-

tialization, it closely varied around 1.95, as shown in Figure 5.

NNs tend to overfit due to higher variational training data (noise), which can be verified by observing training and validation curves: a consid-

erable difference between training and validation scores implies overfitting, also known as high variance (Grus, 2019). As depicted in Figure 5a,

training and validation curves had a good match in vowel classification, proving vowels have fewer higher variational acoustical features. On the

contrary, a significant difference was observed between these curves in word classification (Figure 5b), proving words have higher variational

acoustical features. Therefore, lesser overfitting in vowel classification indicates fewer random acoustical features, whereas higher overfitting in

word classification indicates higher random acoustical features. The vocal tract produces these random acoustical features during word utter-

ances, and thus, the information of dynamic acoustic features is not adequately modelled in word classification compared with vowel

classification.

Figure 6 compares the validation phase's loss and accuracy curves between the vowel and the word classification. After 300 epochs, the vali-

dation loss went down to 0.3388 in vowel classification and 1.0757 in word classification. Similarly, the final validation accuracy was 0.8994 in

vowel classification and only 0.6305 in word classification. A lower loss indicates better cost function minimization, revealing vowel classification

is easier than word classification. The higher accuracy of vowel classification denotes better vowel classification performance than words.

Figure 7 depicts the confusion matrices, where top-left to bottom-right diagonal values represent the percentage of accurate classification

for respective labels. It would have been the best model if these values were all one.

The confusion matrices exhibit that the model's correct prediction was above 0.90 except for /ঋ/[/ri/] and /ঐ/[/oi/]) vowels. We observed

the best performance (0.97 accuracy) in vowel classification, particularly for the /আ/[/a/] vowel. The vowel classification model's worst prediction

accuracy (0.79) was for the /ঐ/[/oi/]) vowel. On the contrary, the word classification model's best performance (0.82 accuracy) was for the /শেষ/

[/�seṣa/] word. In all other words, the model's performance was comparatively lower than vowel classification. The worst performance (only 0.45

accuracy) was found for the /উপরে/[/upare/] word.

F IGURE 5 Loss minimization and accuracy score during training and validation. The differences between word's training and validation
curves increase with increasing epochs, which denotes overfitting due to higher variational acoustic features
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4.3 | Summary and comparison

Word classification performance is significantly lower than vowel classification in all five performance metrics (Table 3). Additionally, word classifi-

cation's deficiency is confirmed by comparing loss curves, accuracy curves (Figure 6), and confusion matrices (Figure 7). Such classification perfor-

mance deviation lies in the unexplained variability of acoustical features. Vocal tract dynamics provide linguistic information related to dynamic

acoustical features and random acoustic noises during word production. Additional parameterized NNs are required to accommodate these

dynamic acoustic features in classifying and filtering individual articulation gestures of words and random acoustics (Table 3). Thus, lower parame-

terized NN poorly performs in word classification.

Tripathi et al. (2020) classified continuous speech into conversational and read modes and later developed a mode-specific phone recognition

system. They reported 0.83 speech mode classification accuracy with vocal tract features. Yusof and Yaacob (2008) achieved 0.8704 accuracy in

classifying five Malaysian vowels using NN with three raw formants and their dispersions. We should not strongly compare with these studies

because the datasets and classification domains are different. However, this comparison proves the applicability of our NN-based classification

model as we achieved as high as 0.89 classification accuracy for vowel classification. As Yusof and Yaacob (2008) showed reasonable accuracy

with the first three formant frequencies and dispersions, more should be investigated on how vocal tract dynamics respond to such lower three

formants and dispersions. Furthermore, we incorporated regional diversity in our speech data collection, lacking age-group diversity. A wider age

range, especially data from younger and older people, would firmly support the finding.

F IGURE 6 Validation loss and accuracy comparison between vowel and word classifications. Vowel loss is optimized to a smaller value than
the word loss, and the vowel accuracy is higher than the word accuracy

F IGURE 7 Confusion matrices for the vowel and the word classifications. The vowel classification model is quite suitable for correctly

classifying vowels, but the word classification model is more confused to classify words correctly

12 of 15 HASAN ET AL.



5 | CONCLUSIONS AND FUTURE DIRECTION

The primary focus of this study was to investigate how NN-based speech recognition is affected by vocal tract dynamics, a crucial factor in spon-

taneous conversational speech recognition because of its variability. We separately classified seven Bengali vowels and seven Bengali words using

two separate datasets. As acoustical features in the classifications, we chose formant frequency and its two derived feature sets: formant transi-

tions and dispersions. A feedforward NN-based classification model was utilized with five well-known performance metrics—classification accu-

racy, AUC-ROC, F1 score, Cohen's Kappa κð Þ, and confusion matrix—to evaluate the classification performance. Experimenting with different

hidden layers and input features identified that five-hidden-layered NN is optimum, and the impacts of formant transitions and dispersions are

insignificant. Between vowel and word classifications, word classification performance lagged by a large margin in all different tests. Vocal tract

dynamics—determined from speech waveshapes, formant trajectories, and COVs—verified that words consist of more acoustic variability than

vowels. Our vocal tract becomes relatively steady during vowel pronunciation, whereas it changes quite rapidly during word pronunciation due to

coarticulation, which eventually induces acoustical feature variations. Therefore, the variation in words produced by vocal tract dynamics lowers

the classification performance. Our NN-based speech classifier can be employed in computational speech motor movement models as an acoustic

to sound mapping tool. Neurological disorders such as Parkinson's and Alzheimer's disease might be diagnosed by comparing patients' acoustic

variabilities with the (regular Bengali speakers') variabilities presented in this article. Various speech dictation gadgets and services require proper

detection of these isolated speech tokens, so service providers can serve Bengali language to their end-users with the aid of our presented Ben-

gali speech token classification pipeline and the datasets. Formant-based features' relative importance revealed in this study will help select fea-

tures in future research. Therefore, this study will help better design speech recognition-based devices and systems. However, this research did

not quantify the amount of classification performance deviations. Future work might quantitatively relate vocal tract dynamics to classification

performance deviations. Furthermore, since the data used in this study were collected from volunteers aged between 20 to 26, future work

should include data from a wider age range to create more diversity.
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