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Abstract

Speech-related research has a wide range of applications. Although speech recognition has

achieved significant success using integrated and efficient models, still some series of chal-

lenges remain as the linguistic-acoustic patterns are perturbed by speakers’ individual artic-

ulation gestures and environmental noises. Temporally overlapping linguistic-acoustic fea-

tures (i.e., formant trajectories) are found for the vocal tract dynamics in word pronunciation,

whereas quasi-stationary and non-overlapped features are obtained for vowels. This thesis

presents a comprehensive study on how Deep Neural Network (DNN)-based classifiers have

marginalized variability due to speaker gestures and environmental noises, and how they im-

proved classification performances focusing only on linguistic-acoustic patterns. Here, vocal

tract resonance-based acoustic features, formant trajectories, are considered as the linguistic-

acoustic features to investigate vocal tract dynamics. Vocal tract-induced variabilities are

evaluated for both vowels and words by the coefficient of variations of the acoustical fea-

ture, and it is justified that the words have more variations than the vowels. Furthermore,

an ANOVA (Analysis Of Variance) test has been performed on formant frequency-related

features of a vowel and a word sample. Then, the statistical significance of all 14 formant

frequency-related features is determined through Tukey’s HSD (Honestly Significant Dif-

ference) test. This study also finds out the optimum number of Mel-Frequency Cepstral

Coefficient (MFCC) features. Many speech-related researches employ MFCCs as acous-

tic features. However, finding the optimum number of MFCCs is an active research ques-

tion. A 4-fold cross-validation approach is used in a DNN with Adam optimizer to compute

performances in five different performance metrics, namely confusion matrix, classification

accuracy, Area Under Curve of Receiver Operating Characteristic (AUC-ROC), F1 score,

and Cohen’s Kappa (κ). The same classification is performed by varying the input features

and hidden layers of a general DNN architecture. Accordingly, the contributions of those

individual feature sets and hidden layers are also identified. Experiments did not find any

considerable contribution of formant transitions and dispersions in speech classification, and

five hidden layers were optimum network configuration. In all different cases, this study has

justified the hypothesis—word classification falls behind vowel classification due to vari-

ability. Furthermore, all performance metrics gave the best score for 24/25 MFCCs; hence

this thesis suggests that the optimum number of MFCCs should be 25, although many ex-
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isting studies use only 13 MFCCs. Also, it verifies that increasing the number of MFCCs

yields better classification metrics with a lower computational burden than the increment

of hidden layers. Using formant frequency, it has achieved as high as 89% classification

accuracy and 99% AUC for vowels. For words, these scores were 64% and 91%, respec-

tively. These scores are achieved with five hidden layer configurations having only 28,263

trainable parameters with five formant frequency features only. In the MFCC-based speech

classification, the optimum number of MFCCs obtained from this study returns classification

accuracies of 99% and 91% for vowel and word classification, respectively, where the vowel

classification score outperforms state-of-the-art results. Such a good performance proves the

efficacy of the proposed method.
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CHAPTER I

Introduction

1.1 Background

Speech processing-based systems such as Microsoft Cortana, Google Assistant, and Amazon

Alexa have vastly simplified our modern life. These command-based services are a helping

hand not only for ordinary people but also for physically-challenged and old-age people.

In general, speech recognition devices and systems have made several automations in our

lives—home automation, automation in smartphones, laptops, and vehicles. Apart from these

devices and systems, speech processing is making a significant impact in healthcare, such

as diagnosis of several neurological diseases. Other applications include wearable for deaf

persons [1], keyword spotting [2], accent classification [3], and language identification [4].

Accordingly, research employing speech processing is booming with a particular interest in

speech recognition, classification, and generation.

Humans have God-gifted potential to recognize spontaneous or natural spoken languages

with the highest accuracy. It is apparent that implementing such capability in machines will

not be straightforward. Accordingly, with the help of advanced models like Deep Neural

Network (DNN) (with a large number of data to train its parameters), less natural read-like

speech recognition technologies have experienced compelling achievements in recent years.

However, similar accomplishments on spontaneous speech recognition have not yet been

achieved due to the contamination of linguistic-acoustic variables by non-linguistic sponta-

neous variables [5], [6]. The origin of such non-linguistic variables is related to speakers’

age, gender, emotion, region, culture, and of course, vocal tract length. It is well-known that

speech production is the overlap of comparatively stable vowel and dynamic consonantal

articulation-related gestures of the vocal tract [7], [8]. To infuse information in speech, the
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change of the vocal tract cavity with respect to time is called vocal tract dynamics. These

vocal tract dynamics can be modeled by the time-varying filtering such as formant frequency,

Mel-Frequency Cepstral Coefficient (MFCC), and Linear Predictive Coding (LPC).

Although vocal tract dynamics plays a significant role in speech classification, research re-

ports, especially investigations on performance deviation due to vocal tract dynamics, are

rarely found. This thesis presents a comprehensive study on the vocal tract dynamics-based

classification performance deviation based on several feedforward DNN model configura-

tions and input feature (formant frequency) combinations. Thus, it also reports the relative

importance of formant frequency and its derived features (i.e., which features contribute more

to speech recognition). The DNN-based classification model has accomplished the relega-

tion of acoustic perturbation through proper tuning of its hyperparameters. Five classifica-

tion metrics are utilized as a guiding tool to attain optimum DNN for classifying dynamic

and quasi-stationary speech tokens (i.e., words and vowels).

In case of speech recognition, selection of appropriate feature is an important task. The per-

formance of recognition depends heavily on the feature extraction phase because some im-

portant characteristics might be left out if it is not chosen correctly. Selection of the number

of coefficients in any appropriate feature is as essential as the selection of classifiers, and in

fact, classification performance employingMFCC is undoubtedly dependent on the optimum

number of coefficients [9]. This thesis finds out the optimum number ofMFCCs to extract the

best possible score. Classification performance can be improved by incrementing the number

of MFCCs and the number of hidden layers. More MFCC features indicate more acoustic

information from speech. Therefore, when more MFCCs are used, DNN’s computational

burden increases for classifying information associated with additional MFCCs. Similarly,

increasing the number of hidden layers also raises the computational burden of DNN. There-

fore, a question arises: which one (MFCC increase vs. hidden layer increase) can produce a

better result with a minimum computational burden? To the best of author’s knowledge, very

few works [9], [10] address similar questions and related issues. This thesis reports on this

issue based on the Bengali language. Beside this, a more improved DNN-based classifica-

tion model is developed to pull out the best possible classification score utilizing the optimum

number of MFCC. Comparison with other relevant studies reveals the competitiveness of our

classification scores. Since vowels and consonants are the fundamental building blocks of
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any language, proper detection of vowels and consonants holds primary importance for any

speech recognition system of that language. Moreover, a combination of vowels and con-

sonants produces speech sounds that hold necessary information to communicate. Thus, the

outcome of this research will help increase the performance of MFCC dependent systems.

This thesis particularly employs the Bengali language to show the speech-token classifica-

tion. Bengali is the 6th most spoken language globally, and it has 267.7 million total users

worldwide, including 228.7 million native speakers [11]. Despite that, extensive research in

this language has not yet been done to such a level to efficiently use it in real communication

devices as a speech-to-text recognizer.

1.2 Literature Review

1.2.1 Speech-Token Classification

Many researchers have been working on speech-token classifications. Tripathi et al. [12] per-

formed classification of speech mode (read and conversational) for four Indian languages,

including Bengali, by employing vocal tract feature in a single-layer feedforward neural

network model. Furthermore, they employed the vocal tract features in multi-layer DNN-

based phone recognition. Yang et al. [13] reported classification of ten English command

words using three types of models, including feedforward DNN and CNN (Convolutional

Neural Network). However, they did not explain classification performance. Similarly, Da-

wodi et al. [14] classified twenty Dari speech tokens employing CNNwithout any vocal tract

dynamics-related study. Particularly for the Bengali language, Sharmin et al. [15] showed

the classification of ten Bengali spoken digits using CNN. Das et al. [16] developed Ben-

gali speech corpus for speaker independent continuous recognition, but they did not focus

extensively on the recognition. Mandal et al. [17] demonstrated a Sphinx3-based Bengali

speech recognition system with the main focus to help visually-impaired people. Islam et

al. [18] performed isolated Bengali speech recognition based on CNN and RNN (Recurrent

Neural Network). On top of these, Badhon et al. [19] remarked some state-of-the-art research

in Bengali Speech Recognition up to the year of 2019, where recognition of Bengali vow-

els and consonants [20], detection of ten Bengali isolated words [21], recognition of Bengali
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phonemes [22] are mentioned. Their study shows that the combination of the HiddenMarkov

Model (HMM) and Gaussian Mixture Model (GMM) is the most used classification model.

1.2.2 Classification Model

In previous decades, most speech recognition researchers utilized statistical HMMs [23] to

consider the temporal variability of speech and GMMs to map the HMM states to the acoustic

input features [24]. Although GMM-HMMmodels have several advantages, neural networks

(DNNs) are continuously replacing their places because these DNNs can resolve some signif-

icant shortcomings of GMM-HMMmodels. In particular, HMM assumes the speech features

as statistically independent, so it does not consider the possible correlation among individual

features. Additionally, HMMs strongly depend on the arbitrary assumption of probability

density function associated with states [25]. GMMs have some disadvantages as well, in-

cluding statistical inefficiency for nonlinear data space [24]. On the other hand, DNNs have

become very successful for modeling nonlinear data [24], and it is heavily used in pattern

recognition tasks [26]. Several studies prove that DNNs with many hidden layers outper-

form GMM-based models by a large margin in various speech recognition benchmarks [24].

1.2.3 Acoustic Features

Different researchers have employed different sets of features for different speech-research

purposes. Shanthi and Lingam [27] described state-of-the-art feature extraction techniques in

speech research. Their research revealed that MFCC is the frequently used feature calculated

from the short-term energy spectrum expressed on a Mel-frequency scale. It contains speak-

ers’ information and is commonly employed as a standalone feature in speech recognition

tasks [13]–[15]. Linear Discriminant Analysis (LDA) is another technique that maximizes

the between-class variation than the within-class variation in a dataset. Fusion MFCC, which

is the combination of MFCC and LDA technique, was practiced by Gaikwad et al. [28]. LPC

analysis is another technique that approximates the speech sample as a linear combination of

past speech samples. Perceptual Linear Predictive (PLP) analysis extends the LPC technique,

which is focused on cross-speaker isolated word recognition. Formant frequency is another

important feature that is referred to as the peaks of the acoustic spectrum [29].
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Formant Frequency

Formant frequency holds substantial acoustic information, and that is why many researchers

have been utilizing this to classify vowels and vowel-consonant-vowel (VCV) sequences.

Sounds come from our mouths due to resonance in our vocal tract, and formant frequencies

refer to those resonant frequency peaks. The laryngeal energy activates the resonance, and

these have a frequency of below 5 kHz in most cases. That is why the usual discussion of

formant frequency lies up to the first five formant frequencies, and particularly, the vowels

are often characterized by the first three formants [30]. In a study on the place of articulation,

Story and Bunton [31] adopted the first three formant frequencies and their transitions, where

they revealed the contribution of these transitions to the overall changes in the vocal tract

shape at the time of speech production. They also provided direction that the time derivative

of these transitions, which is basically the second derivative, is a possible means to estimate

the contributions of both vowels and consonants to the variation of vocal tract dynamics.

Kent and Read [30] emphasized formant transitions as an essential acoustic cue for speech

perception, where second and third formant transitions are related to the place of production

of a particular speech. Stephens and Holt [32] illustrated VCV and CV (consonant-vowel)

utterances by morphing between natural speech tokens, and then the ability to classify those

utterances was verified by human participants.

Along with formant frequencies, formant dispersion, i.e., the difference between two for-

mants, is also used in several studies. Among these, López et al. [33] used 12-dimensional

feature vectors, and Hasan et al. [34] used 9-dimensional feature vectors. Both of these

research groups employed the first five formants and four dispersion between two different

pairs of formants each time. Yusof et al. [35] used the first three formant frequencies and dis-

tances between each of them to classify Malaysian vowels, and they reported improvement

for most of the vowels’ classification when corresponding formant differences are incorpo-

rated. Some other studies also reported the classification of vowels using multiple combi-

nations of the three lowest formants and computed differences among them [36], [37]. Yan

and Vaseghi [38] used the first four formant frequencies to classify British, American, and

Australian accents, and according to their findings, formant frequency plays a significant role

in classifying accents.
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Mel-Frequency Cepstral Coefficient (MFCC)

Rao andManjunath [39] specified some standard features used in phone-based speech recog-

nition systems. In general, the standard spectral features, including LPCC (Linear Prediction

Cepstral Coefficient) and MFCC representing the gross shape of the vocal tract, are the most

widely used. A recent survey paper [40] have reported 24 contemporary works on the Ben-

gali language, out of which 15 works have used MFCC as input features. In another survey

paper on Arabic speech recognition, Al-Anzi and AbuZeina [41] have reported 13 studies on

isolated words speech recognition, out of which 12 studies have used MFCC. Furthermore,

Silva et al. [10] have stated that the best recognition performance can be achieved by uti-

lizing MFCC. Therefore, MFCC is the feature of significant interest in most speech-related

researches.

The broad demand for MFCC can be proven from several studies in the Bengali language.

Sharmin et al. [15] classified ten spoken Bengali digits by using MFCC features. In a Ben-

gali speech corpus development, Das et al. [16] performed phoneme recognition using 13

base MFCCs and their first and second-order derivatives. Mandal et al. [17] also used the

same features to develop a Sphinx3-based Bengali speech recognition system with the main

focus to help visually-impaired people. Islam et al. [18] performed isolated Bengali speech

recognition employing MFCC features. Furthermore, Sumon et al. [21] experimented clas-

sification of ten Bengali short speech words based on MFCC features and raw audio files in

two different classification models. They found that MFCC-based classification outperforms

raw audio-based classification. Syfullah et al. [20] performed recognition of Bengali speech

characters (vowels and consonants) using MFCC features. On top of these, Badhon et al.

[19] remarked some state-of-the-art studies in Bengali speech recognition up to the year of

2019. Their study reveals that MFCC and linear prediction coefficients are the most adopted

feature extraction techniques.

Apart from the Bengali language, MFCC has been used in other language researches as well.

Most of them utilized 13 MFCC features in a DNN classifier, such as recognition of speak-

ers [42], English phoneme [43], emotion from English audio [44], five Malayalam vowel

phonemes [45], twenty Dari speech tokens [14], three Arabic words [46], and ten English

command words [13]. Some studies also preferred CNN models such as isolated English
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word recognition by Soliman et al. [47]. Cen et al. [48] developed a real-time speech emotion

recognition system from continuous speech utilizing three cepstral features—PLP cepstral

coefficients, MFCC, and LPCC. Furthermore, Salau et al. [3] performed accent classifica-

tion of three Nigerian languages using MFCC features. From their comparison with similar

studies, it is evident that MFCC is the most accepted feature.

1.3 Importance of Vocal Tract Dynamics on DNN-Based Speech Classification

Where does the vocal tract dynamics carry importance? According to the prominent theory

of coarticulation, the acoustic realization of a phonological segment depends on the context

where it is being used [49]. This articulatory and acoustic context-sensitivity is associated

with the dynamic interaction of the vocal tract, which essentially induces variation in acous-

tic features such as formant frequency and MFCC [50]. These dynamic articulatory activi-

ties are essential for conveying information to other humans and machines through speech

tokens. In addition to the information transmission, these articulation dynamics provide a de-

scription of neurological diseases such as Parkinson’s disease [51], [52], Dementia [53], and

Alzheimer’s disease [54]. These diseases cause vocal tract variation, which results in acousti-

cal feature variation. Therefore, proper estimation of these vocal tract variations would help

diagnose these diseases. Brabenec et al. [55] utilized 14 combinations of speech task and

acoustic features for diagnosing Parkinson’s disease. Hemmerling and Wojcik-Pedziwiatr

[51] performed prediction and estimation of the same disease based on English vowel sounds.

Additionally, Maor et al. [56] demonstrated an independent relationship of coronary artery

disease with voice signal characteristics. Apart from these, the mechanics of vocal tract tube

will guide the doctors in treatment of several other diseases like obstructive sleep apnea syn-

drome, dysphagia [57], dysphonia [58], cleft palate, and oral cancer [59]–[61]. Therefore,

proper analysis of articulatory feature variations is necessary for automatic speech recogni-

tion and several biomedical applications [62]. Additionally, recognition of speech tokens has

other applications, including emotion recognition [44], voice assistance in the smartphone,

laptop, and vehicles, home automation [63], as well as assisting physically-challenged and

old-age people [64], [65]. Thus, proper classification of speech tokens and the study of vocal

tract dynamics have significant impact.
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Performance evaluation of speech recognizers with respect to variability is a tremendously

impactful task. Recognition of spontaneous and conversational speech requires consideration

of internal structural information or generative mechanisms rather than only surface-level in-

formation. If only surface-level information is considered, theoretically, infinite information

is required to completely cover the overwhelming variability [5]. That is why the variabil-

ity induced by the vocal tract needs to be considered during speech recognizer design [66].

Vocal tract-induced formant variabilities are adapted for speech classification by the life-

long learning of humans. Based on the classification performance, Directions Into Velocities

of Articulators (DIVA) [67], [68], Task Dynamics (TD) [69], [70], State Feedback Control

(SFC) [71], and Feedback Aware Control of Tasks in Speech (FACTS) models have been for-

mulated for computational speech-motor movement. These models are prominent in hearing

impairment, stuttering, and phonatory learning. A well-trained DNN as a speech token clas-

sifier considering perturbed formant can be integrated effectively in the acoustics to sound

mapping tool in the auditory feedback module of these models.

1.4 Scopes and Objectives

This study presents a step-by-step formation of Bengali speech classification model based on

DNN. The hypothesis of this research is that there should have a noticeable impact on clas-

sification performance due to the variability induced by vocal tract dynamics. This research

analyzes the reason behind such impact with a particular interest in the vocal tract dynamics.

The specific objectives of the research are to—

i. construct an optimized DNN-based speech-token classification model,

ii. select and analyze appropriate speech features to use in DNN model,

iii. estimate vocal tract dynamics on speech classification,

iv. identify the importance of different speech features, and

v. analyze the performance of classification considering vocal tract dynamics.
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1.5 Layout of the Thesis

This thesis is organized as follows. The following chapter (Chapter II) explains the Datasets,

feature extraction process (both formant frequency and MFCC), and DNN-based classifica-

tion model with hyperparameters and evaluation metrics. With the features and classification

model, two separate types of experiments are reported in Chapter III and Chapter IV, respec-

tively.

Chapter III starts with an overall workflow to investigate the effect of vocal tract dynamics on

speech recognition followed by estimation of vocal tract dynamics. After that, several exper-

iments by varying formant frequency-based input feature vectors and the number of hidden

layers and hidden neurons are demonstrated. It presents the results of formant frequency-

based speech classification with particular emphasis on observed classification performance

deviation. Here, the performance comparison between vowel and word classification is ana-

lyzed with vocal tract dynamics.

Chapter IV also starts with an overall workflow to find out the optimum number of MFCC.

This chapter can be broadly classified into four sections. Firstly, several experiments are

reported to find the optimum number of MFCC. Secondly, the suitability between MFCC

increase and hidden layer increase are compared. Thirdly, the DNN configuration is varied

to find out the best possible score with the optimum number of MFCCs, and finally, similar

existing works are compared based on both the performance score and the number of MFCCs

used in those studies.

Lastly, all findings and applications are summarized in Chapter V with concluding remarks

and some recommendations on future research directions.
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CHAPTER II

Methodology

This chapter describes the Datasets, feature extraction, and DNN classifier involved in this

work. Using these core methodologies, two separate types of experiments have been done

which are reported with necessary flow diagrams (Figure 3.1, Figure 4.1) to show the key

steps in corresponding chapters (Chapter III, Chapter IV).

2.1 Description of the Datasets

For the evaluation of the effect of vocal tract dynamics properties on the DNN-based classi-

fication and finding out optimum number of speech features, seven Bengali vowel-sounds

(/অ/[/O/], /আ/[/a/], /ই/[/i/], /উ/[/u/], /ঋ/[/ri/], /এ/[/e/], and /ঐ/[/oi/]) and seven word-sounds

(েবাতল, বন, কিপ, েদাকান, েশষ, সিঠক, and উপের) were selected. These data were collected from 20

Bangladeshi speakers (age 20–26 years), who use Bengali as their first language. Guiding

the speakers to pronounce the speeches in two different accents, 40 sound signals were cap-

tured corresponding to each of these seven vowels and words. The sounds were recorded on

a ‘Xiaomi Redmi 3’ smartphone, and later they were processed in version 2.2.2 of the Au-

dacity software [72]. The whole datasets used in this study are publicly available for research

purpose [73]. It has 40 utterances in each of the seven classes for both vowels and words.

The volume of the datasets used in this work is comparable to other similar researches on

speech classification, such as [20], [74], and [75]. Particularly for Bengali voice recognition,

Syfullah et al. [20] used only 20 different sample inputs for each of their Bengali characters

to classify. In a neural network-based word classification, Selvan and Rajesh [74] used 42

samples for each of their words. On the contrary, this thesis has utilized 40 different samples

for each Bengali characters and words used in this study. Furthermore, Baquirin and Fer-
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nandez [75] showed that 110 sound clips are reasonable for this type of works, whereas this

thesis has used 280 sound clips for both vowel and word classification.

2.1.1 Why We Used These Specific Datasets

The Bengali alphabet has 11 vowels. Some vowels are not included in this study since almost

all of those excluded vowels cannot be separated in spoken Bengali language. For example,

while pronouncing words consisting of vowels, ই cannot be separated from ঈ, and উ cannot

be separated from ঊ. They actually have a very similar pronunciation while used in words of

spoken language. That is why one vowel from each pair (e.g. ই from ই, ঈ) is selected in the

vowel dataset.

To be consistent, since seven vowels were selected, we searched for seven words (as our

primary target is to compare vowel and word classification). Those particular seven words

were selected since they tend to vary when pronounced by different speakers. Those selected

words have diverse pronunciations, which means their pronunciation is not quite fixed across

different speakers. A speaker might say the word েবাতল differently than what another speaker

might pronounce. The same thing is true for all of those seven words. Since this thesis aims

to study variations, we choose those specific words.

2.2 Feature Extraction

Both formant frequency andMFCC have been utilized as speech features in the classification

model. Furthermore, the optimum number of speech features for a competent classification

performance are also experimented with these features. Raw speech to corresponding feature

extraction is explained in the following subsections.

2.2.1 Formant Frequency

Samples at every 6 ms interval are taken to extract the five formant frequencies in a window

length of 25 ms using PRAAT script [76]. Additionally, four specific formant dispersions,

which are the differences between two formant frequencies, are calculated for all vowels and
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words according to Equation 2.1.

F51 = F5− F1

F43 = F4− F3

F53 = F5− F3

F54 = F5− F4

(2.1)

On top of these, five formant transitions across the time axis are calculated by taking the

second derivative with backward difference approximation given in Equation 2.2.

F ′′
i = |Fi − 2Fi−1 + Fi−2| (2.2)

where, i denotes a counter that goes from 1 to the maximum number of formant values for

each of the five fundamental formants in each class. By applying the above equation to all

five fundamental formants, five more features related to formant frequency are extracted.

2.2.2 Mel-Frequency Cepstral Coefficient (MFCC)

This thesis has utilized version 0.7.2 of the librosa package [77] in the Python (version 3.x)

programming language to extract the MFCC features. MFCC feature extraction process in-

volves applying Discrete Fourier Transform (DFT) on a signal window, taking the logarithm,

and then expressing on a Mel scale, followed by a Discrete Cosine Transform (DCT). Then

the DCT components refer to the Mel-frequency cepstral coefficients or MFCCs. Rao and

Manjunath [39] presents a wonderful explanation of the process from where the key steps are

briefly explained as follows.

Often a filtering is performed to emphasize on higher frequency components. Transfer func-

tion of such a widely used pre-emphasis filter is given in Equation 2.3.

H(z) = 1− bz−1 (2.3)

where, b, having a typical value between 0.4 to 1, represents the slope of the filter.
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In the next step, the speech signal is segmented typically on a 20 ms window advanced every

10 ms, and for this windowing, Hanning or Hamming window are generally utilized. Then,

DFT is applied to these windowed frames, which results in magnitude spectrums according

to Equation 2.4.

X(k) =
N−1∑
n=0

x(n)e
−j2πnk

N ; 0 ≤ k ≤ N−1 (2.4)

where, N denotes the number of points in DFT.

These Fourier-transformed signal is passed through a Mel-filter bank, the fundamental band-

pass filter behind MFCC computation. Mel spectrum is achieved from physical frequency

according to the approximation given in Equation 2.5.

fMel = 2595 log10

(
1 +

f

700

)
(2.5)

where, fMel is the converted Mel-spectrum from physical frequency f .

Accordingly, the multiplication of magnitude spectrum X(k) by triangular Mel weighting

filters results in the Mel-spectrum of X(k), which is shown in Equation 2.6.

s(m) =
N−1∑
k=0

[
|X(k)|2Hm(k)

]
; 0 ≤ m ≤ M−1 (2.6)

where, the total number of weighting Mel-filters is denoted by M . The kth spectrum bin

is weighted by Hm(k), which results in mth output Mel-frequency band. Hm(k) can be

expressed according to Equation 2.7.

Hm(k) =



0, k < f(m−1)

2(k−f(m−1))
f(m)−f(m−1) , f(m−1) ≤ k ≤ f(m)

2(f(m+1)−k)
f(m+1)−f(m)

, f(m) < k ≤ f(m+ 1)

0, k > f(m+ 1)

(2.7)

where,m takes a value between 0 toM − 1.

Finally, DCT is applied to the Mel-frequency band which results in cepstral coefficients.

Before DCT, the Mel-frequencies are generally converted to a logarithm scale as illustrated



CHAPTER II. Methodology 14

in Equation 2.8.

c(n) =
M−1∑
m=0

log10 (s(m)) cos
(
πn(m−0.5)

M

)
; n = 0, 1, 2, . . . , C−1 (2.8)

where, c refers to the ultimate Mel-frequency cepstral coefficients or MFCCs, and C denotes

the number of coefficients.

2.3 Deep Neural Network-Based Classification Model

A feedforward DNN is utilized as the main classifier to classify vowels and words. Some-

times more advanced DNN architectures (such as CNN) are used for these types of classi-

fication tasks. Particularly for Natural Language Processing (NLP) tasks, RNNs (such as

LSTM—Long Short-Term Memory) or more advanced big Transformer models (such as

BERT—Bidirectional Encoder Representations from Transformers) are widely used. It is

worth mentioning that although we are dealing with a natural language, here we are observ-

ing the effect of vocal tract dynamics on speech token classification rather than conventional

NLP tasks like next-word prediction or text summarization. Therefore, feedforward DNN is

more suitable than models like LSTM and BERT for this purpose. Someone might ask why

did this thesis use such a simpler DNNmodel? First of all, we are more interested in studying

the effect of vocal tract dynamics on vowel and word classification performance. A classi-

fication model like CNN would do the job, but the main objective of this research (effect of

acoustic variation on classification) cannot be clearly estimated as the convolution operation

of CNN relegates those effects. Secondly, a feedforward DNN is the building block of all

these advanced models. In a typical CNN architecture, feedforward DNNs are placed after

the initial convolution layers. Furthermore, more recently, researchers are focusing on these

simpler DNNs (also called multilayer perceptrons) for various classification tasks. Touvron

et al. [78] efficiently solved a complex classification task employing simpler DNNs (also

called multilayer perceptrons) rather than a CNN. Moreover, a more simplistic and efficient

model is preferable for deploying themodel in low-computation-capable edge devices such as

smartphones, Arduino, microcontrollers, and Raspberry Pi. Therefore, a basic feedforward

DNN model is selected as the primary classifier to study vocal tract dynamics. A similar

study on speech classification [12] also used such a basic model.
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The following subsections explain the elements involved in the classification model.

2.3.1 Feature Standardization

Extracted formant frequency and MFCC features have different dimensions having values at

different ranges. Feature standardization or Z-score normalization is a method to transform

the data to zero-mean and unit-variance that essentially helps DNNs and other machine learn-

ing algorithms to converge faster [79]. Accordingly, all acoustical features are standardized

before feeding in their respective models according to Equation 2.9.

x′
c =

xc − xc

σc

(2.9)

Here, the subscript c indicates that this normalization operation is performed to each column,

where the columns represent different dimensions (five formants, five dispersions, and four

transitions for formant frequency; MFCC numbers for MFCC feature). xc and σc denotes

the mean and the standard deviation of that column, and x′
c is the standard features having a

mean of zero and variance of one. These normalized features are supplied in the input layer

of the feedforward DNN-based classification model.

2.3.2 Model Configuration

The number of neurons in the input layer depends on the number of input features. The vowel

and word classes act as the output layers for the vowel and the word classification models,

respectively. In between the input and output layer, there could be one or many hidden layers.

The number of hidden layers and the number of neurons in these hidden layers cannot be

defined by any hard and fast rule or formula. It varies based on the application area and can

be best approximated by multiple experiments. This thesis came up with five hidden layers

as the optimum number through experiments. Nevertheless, classifications using one, two,

three, four, and six hidden layers are also reported to justify choosing five hidden layers.
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Experiments on Vocal Tract Dynamics

In the investigation into the effect of vocal tract dynamics, the number of input feature vectors

used in classification are varied. Classification is performed employing five different sets of

input features—only five input vectors (five formants), only three input vectors (first three

formants), ten input vectors (five formants and five dispersions), nine input vectors (five

formants and four transitions), and fourteen input vectors (all features—five formants, five

dispersions, and four transitions). Thus, performances are compared among combinations of

formant frequencies, formant dispersions, and formant transitions. The architecture of the

feedforward DNN model having five hidden layers and five formants in input, particularly

for vowel classification, is shown in Figure 2.1.

Input Layer  ∈ ℝ ℝ⁵ Layer 1  ∈ ℝ ℝ128 Layer 2  ∈ ℝ ℝ128 Layer 3  ∈ ℝ ℝ64 Layer 4  ∈ ℝ ℝ32 Layer 5  ∈ ℝ ℝ16 Output Layer  ∈ ℝ ℝ⁷

/অ/ [/ɔ/]

/আ/ [/a/]

/ই/ [/i/]

/উ/ [/u/]

/ঋ/ [/ri/]

/এ/ [/e/]

/ঐ/ [/oi/]

F1

F3

F4

F5

F2

Figure 2.1: The architecture of the fully-connected feedforward DNN-based vowel classifi-
cation model having five hidden layers. Input neurons represent the five formant frequency
features, and output neurons represent the output vowel classes.

In the figure, five neurons in the input layer are involved as five formant frequencies (input

feature vectors). When all 14 feature vectors (five formants, five dispersions, and four tran-

sitions) are employed, there would be 14 neurons in the input layer. Similarly, when it is a

word classification model, the output classes would be words rather than vowels as shown in

Figure 2.1.
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Experiments on Optimum Number of MFCCs

The number of input MFCC features are varied to find out the optimum number of MFCC

features. Two hidden layers of 32 and 16 neurons, respectively are utilized to find out the

optimum number of MFCC, the architecture of which is presented in Figure 2.2 particularly

for vowel classification. As the number of input features are varied during the optimum

number of MFCC searching, the input neurons of the Figure 2.2 changed accordingly. Plus,

for word classification, the output classes correspond to seven words. Furthermore, after

finding the optimum number of MFCC features, the number of hidden layers and the number

of neurons on them are varied to obtain the best possible score.

MFCC 

1

MFCC 

2

MFCC 

N

1

2

32

1

2

16

1

2

7

Activation: 

tanh

Activation: 

tanh

Activation: 

softmax

 

 

 

Inputs 1
st
 Hidden Layer 2

nd
 Hidden Layer Output Layer Output Classes

Figure 2.2: The architecture of a fully-connected DNN-based vowel classification model
having two hidden layers. Input neurons represent the MFCC features, and output neurons
represent the output vowel classes of the vowel classification model.
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2.3.3 Weights, Biases, and Hyperparameters

Weights and biases are two fundamental trainable parameters of any DNN-based model. In

any dense layer, the output of any neuron is calculated according to Equation 2.10.

v = b+
n∑

i=1

xi · wi

y = F (v)

(2.10)

where, F = activation function, b = bias, w =weights, x = input to neuron, n = the number

of inputs from the incoming layer, and v refers to the linear operation that is applied to each

and every neurons in the model. After the linear operation, an activation function is applied

to all neurons in a layer to adapt to the system’s non-linearity and restrict the output values

within a certain limit defined by that particular activation function type. In hidden layers,

tanh activation function is chosen since it gave a better performance while experimenting

with several activation functions such as ReLU (Rectified Linear Unit) and Leaky ReLU. The

tanh activation limits the output from −1 to +1 as shown in Equation 2.11.

F (v) = tanh (v) =
ev − e−v

ev + e−v
(2.11)

For a multi-class classification model like what we are dealing with, Softmax activation func-

tion is an optimal choice in the output layer. It returns the probabilities of each class through

which the target class is determined, having the highest probability close to one [80]. The

mathematical equation is given in Equation 2.12.

ŷj = F (vj) =
evj∑K
j=1 e

vj
; j = 1, 2, 3, · · ·K (2.12)

where, K is the total number of output classes, and ŷj denotes the prediction for jth class.

At the training phase, example input-output patterns are served to the model so that it can

tune its trainable parameters to predict the output of the classification task. Presentation of

input features to the model can be either in sequential mode or in batch mode. Sequential

mode is also called stochastic mode, where individual training samples are passed from the
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input node to the output node one by one, and then the trainable parameters are perturbed

with respect to these individual sequences. On the contrary, batch mode training involves all

samples to be passed at once, and accordingly, the parameters are also perturbed based on

those training samples at once. For a large dataset, the sequential mode is an optimal choice

as it needs less computational power [81]. In this thesis, batch mode training is chosen.

One pass of the full training set through the model is termed as one epoch. The whole dataset

(both vowel and word) is divided into a training set of 80% and a validation set of 20%. In

each epoch, all of these trainable parameters are slightly changed towards the best values

by minimizing the loss function. This loss function is actually a measure of the difference

between the actual output and predicted output. This study has used categorical cross-entropy

loss function as defined by Equation 2.13.

Loss = −
K∑
j=1

yj · log ŷj (2.13)

where, yj is the ground-truth or target value, and ŷj denotes the prediction made by the model

for jth class. More deviation between these two will result in a higher loss score. The key

technique behind optimizing a DNN is to use this score as a feedback signal to fine-tune the

trainable parameters gradually to reduce this loss score. An optimizer makes this adjustment

through which it implements the fundamental Backpropagation algorithm. The optimizer

used in this work is Adam with a learning rate of 0.005. It is one of the heavily used opti-

mization algorithms in the deep learning domain [82], [83].

The number of weights equals the number of connections between neurons of a layer and its

preceding layer, whereas the number of bias parameters is equal to the number of neurons in

that particular dense layer. Since this is a fully-connected network, all input neurons are fully

connected to the first hidden layer, all neurons of the first hidden layers are fully connected

to the second hidden layer, and so on. The total weight parameter (say, Wl) in a dense layer

(say, l) can be found by multiplying the number of neurons (say, nl) by the number of input

to that particular layer (i.e., the number of neurons in the preceding layer, nl−1). The total

bias parameters (say, Bl) is equal to the number of neurons (nl) of that particular layer l.

Therefore, the total number of trainable parameters in a particular layer l can be derived as

shown in Equation 2.14. Particularly for the configuration shown in Figure 2.1, the total
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trainable parameters is 28,263.

Wl = nl × nl−1

Bl = nl

Thus, the total trainable parameters = Wl +Bl

(2.14)

2.3.4 Evaluation Metrics

Some specific metrics are required to compare the performance between vowel and word

classification. To measure the performances of the classification, this thesis utilizes five dif-

ferent metrics—Confusion matrix, classification accuracy, Area Under Curve of Receiver

Operating Characteristic (AUC-ROC), F1 score, and Cohen’s κ. For all these different eval-

uation metrics mentioned above, a higher value implies better classification performance.

A typical confusion matrix is shown in Figure 2.3. It has four primary elements.

actual positive actual negative
predicted positive TP FP
predicted negative FN TN

Figure 2.3: Elements of a confusion matrix.

True Positive (TP) refers to actual positive examples predicted as positive as well, whereas

False Positive (FP) is actually negative, but the classifier predicts as positive. Similarly, True

Negative (TN) are actual negative predicted as negative as well, whereas False Negative (FN)

are actual positive cases predicted as negative by the classifier. Several evaluation metrics

can be defined from the confusion matrix [84], some of which are given in Equation 2.15.

Classification accuracy =
TP + TN

TP + TN + FP + FN

Precision or True Positive Rate =
TP

TP + FP

False Positive Rate =
FP

FP + TN

Recall =
TP

TP + FN

(2.15)
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Classification accuracy measures the correctness of classification, which means it gives a

ratio of correct predictions (both TP and TN) to all predictions the model made. Since the

true label of the classes is known for both training and validation time, the algorithm compares

this true label with the predicted label to provide this score. When the number of samples is

different in different classes, the accuracy score cannot explain the whole scenario. In that

case, AUC-ROC measures the degree of separability among different classes. A Receiver

Operating Characteristic (ROC) curve is a plot of True Positive Rate versus False Positive

Rate. As discussed previously, the Area Under Curve of ROC (AUC-ROC) is a means to

evaluate a classification performance, especially when the sample distribution is not uniform.

Precision or True Positive Rate is the ratio of the number of correctly classified labels to all

predictions the model picked as correct, including those not identified correctly, and Recall

or Sensitivity is the ratio of the number of correctly classified labels to all labels that should

have been classified correctly (i.e., all ground truths). In most cases, an inverse proportional

relationship exists between Precision and Recall, and therefore, a harmonic mean of these

two metrics gives a better estimate of the model’s performance. This metric is known as F1

score or F-measure which is calculated according to Equation 2.16.

F1 score = 2× Precision× Recall
Precision+ Recall

(2.16)

Thus, F1 score combines two metrics—Precision and Recall, which are proportional to cor-

rect classification. Other than these derived metrics, confusion matrix itself is used as another

graphical performance metric that facilitates a way of observing classification performance

with respect to individual labels or classes.

Apart from these metrics, Cohen’s κ is a statistical metric that measures the inter-rater agree-

ment, and it tells us how much the classifier is performing other than a model that delivers

just a random guess [85]. According to Landis and Koch [86], a value of less than zero tells

that the model is giving a random guess; a value of 0.81 to 1.00 implies an almost perfect

model; a value of 0.61 to 0.8 indicates a substantial-good model, and so on.

Different performance metrics have different pros and cons, and a model’s performance

should not be justified based on a single metric. That is why, all these five performance
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metrics are considered. However, the value of these metrics varies due to different reasons,

including random initialization of network parameters. Furthermore, it depends on which

portions of data are used for the training phase and which portions are for the validation

phase. Our experiments arbitrarily decided which sample data to be used in which phase so

that the performance cannot be biased to sample data. Thus, the metrics’ values changed for

different runs. K-fold cross-validation is a well-known technique to combat this issue, in

which the total dataset is split into K number of folds. In each run, (K−1) folds are used to

train the model, and the remaining single fold is used to validate the model [87]. Thus, K

runs are required to traverse all the folds in total, and then the average performance of all of

these folds is used as a cross-validated evaluation metric.
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CHAPTER III

Experimental Results: Effect of Vocal Tract Dynamics

The following experiments utilize formant frequency as acoustical feature. A sketch of the

steps involved in analyzing the effect of vocal tract dynamics and finding out the importance

of different formant frequency features is depicted in Figure 3.1.

Raw Speech Collection
&

Dataset Preparation

Formant Frequency Extraction
&

Standardization

Evaluation of Vocal Tract Dynamics
Input Features and Hidden Layers
Variation of the Neural Network

Classifier

Analyze Classification Performance
Considering Vocal Tract Dynamics

Effect of Vocal Tract Dynamics,
Importance of Different Formant

Frequency Features, and an Optimized
Classifier

Graphical Comparison Between Vowel
and Word Classification Performance

Figure 3.1: Steps involved in analyzing the effect of vocal tract dynamics and finding out the
importance of different formant frequency features.

3.1 Evaluation of Vocal Tract Dynamics

To demonstrate the shape of vowel and word waves in the time domain, the waveforms of a

sample vowel (/উ/[/u/]) and a sample word (েদাকান) are shown in Figure 3.2.
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(b) েদাকান word.

Figure 3.2: Waveshapes of a vowel and a word uttered by a particular speaker. Word wave-
shape shows more discontinuity than that of the vowel.

Figure 3.2a and Figure 3.2b depict that the vowel waveform is relatively steady, but silence

presents within the word waveform since the word consists of vowels and consonants. The

glottal pulse source energizes the quasi-stationary vocal tract during vowel production, and

the output becomes an approximately steady-state waveform. On the contrary, consonantal-

constrictions are present in word production, which induces the transitional nature of the

vocal tract, and thus the output becomes a discontinuous waveform shown in Figure 3.2b.

Formant trajectories are usually used to illustrate the state of the transfer function of vocal

tract during speech production, and the dispersion of formant trajectories exhibits the numer-

ical values of vocal tract dynamics [88]. For visual comparison, the formant trajectories of

/অ/ [/O/] vowel and েবাতল word are shown in Figure 3.3a and Figure 3.3b respectively.
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(b) েবাতল word.

Figure 3.3: Formant trajectories for a vowel and a word. There are more variations in the
word formants as compared to vowel formants.

Between Figure 3.3a and Figure 3.3b, more dispersive nature is observed in Figure 3.3b due to



CHAPTER III. Experimental Results: Effect of Vocal Tract Dynamics 25

the presence of several consonantal constrictions during word production. These consonantal

constrictions in the vocal tract induce dispersive behavior in vocal tract resonance as well as

filtering properties. The Coefficient Of Variation (COV) of all formants is calculated for all

vowels and words. To calculate this variation for a particular formant for a particular vowel

or word, at first, mean (µ), standard deviation (σ), and COV are calculated for a single source

(speaker) according to the Equation 3.1.

µj =

∑n
i=1 xi

n

σj =

√∑n
i=1 (xi − µj)

2

n− 1

COVj =
σj

µj

(3.1)

where, n = total number of formant values for the jth source. Considering Ns number of

sources for that particular vowel or word, the overall COV of that particular formant is cal-

culated using Equation 3.2.

COV =

∑Ns

j=1 COVj

Ns

(3.2)

The average COVs as calculated from Equation 3.2 using Ns = 40 sources are shown in Ta-

ble 3.1 for both vowels and words. Here, we can easily observe that there is a sharp decrease

in the magnitude of variation with increasing formant order up to F4. The variations between

F4 and F5, especially for vowels, are less discernible. Between words and vowels, words

revealed higher valued COVs. Also, the average coefficient of variation from Table 3.1 is

shown in Figure 3.4 for visual comparison. It clearly illustrates that the words’ formants have

more variation than vowels. The first formants have the highest dispersive nature, and the

variation decreases for lower-order formants.

3.2 Analysis of Variance and Formant Frequency Feature Selection

This section provides some statistical analysis on the 14 formant frequency-related features of

a sample vowel (/অ/[/O/]) and a sample word (েবাতল). For both of these samples, all speakers’

data are concatenated one after another. The analysis provides a direction on which set of

features are statistically significant and which are not.
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Table 3.1: Coefficient of variation (COV) for the vowel and word formant frequencies.
Higher values of COV denote higher variation in acoustical features (formant frequency).

Coefficient of Variation (COV)

Speech F1 F2 F3 F4 F5

অ 0.2959 0.1823 0.1064 0.0668 0.0603
আ 0.3443 0.0896 0.0853 0.0602 0.0599
ই 0.3288 0.2575 0.0670 0.0536 0.0669
উ 0.4756 0.2167 0.1558 0.0672 0.0719
ঋ 0.4230 0.3123 0.1077 0.0829 0.0874
এ 0.3340 0.2063 0.0659 0.0451 0.0647
ঐ 0.3915 0.4939 0.1312 0.0623 0.0701

েবাতল 0.4623 0.3073 0.1633 0.1004 0.0869
বন 0.6066 0.3503 0.2087 0.1226 0.1050
কিপ 0.7004 0.4955 0.1813 0.1027 0.0969
েদাকান 0.6829 0.3615 0.1936 0.1266 0.0926
েশষ 0.9849 0.2661 0.1335 0.0847 0.0710
সিঠক 0.9099 0.3926 0.1916 0.1133 0.0940
উপের 0.5334 0.4157 0.1753 0.1197 0.0932
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Figure 3.4: Average formant COV comparison between vowel and word (deduced from Ta-
ble 3.1). Words have more variability than vowels.

3.2.1 Summary Statistics

Table 3.2 and Table 3.3 report total number of sample count, sum, average, and variance of

each of the formant frequency-related features for the /অ/[/O/] vowel েবাতলword, respectively.
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Table 3.2: Summary statistics of formant frequency-related features of /অ/[/O/] vowel.

Feature Count Sum Average Variance

F1 1484 866250.98 583.7270755 54219.22565
F2 1484 1669570.88 1125.047763 154094.7943
F3 1484 3688565.93 2485.556557 156708.4292
F4 1484 5451213.7 3673.324596 202983.4683
F5 1484 6882419.08 4637.748706 218200.3812
F1′′ 1484 113339.84 76.37455526 35493.1726
F2′′ 1484 163873.29 110.4267453 63459.26143
F3′′ 1484 215601.16 145.2838005 144303.1826
F4′′ 1484 269863.58 181.8487736 124797.2352
F5′′ 1484 304167.03 204.9643059 144386.5312
F51 1484 6016168.1 4054.021631 185334.0068
F43 1484 1762647.77 1187.768039 137152.62
F53 1484 3193853.15 2152.19215 183468.9797
F54 1484 1431205.38 964.4241105 155252.2279

Table 3.3: Summary statistics of formant frequency-related features of েবাতল word.

Groups Count Sum Average Variance

F1 3040 1148154.48 377.6823947 30773.40048
F2 3040 3116011.44 1025.003763 108160.1025
F3 3040 7669982.91 2523.020694 221057.7689
F4 3040 11131285.48 3661.607066 174338.2556
F5 3040 14436984.34 4749.008007 238352.6907
F1′′ 3040 231307.74 76.08807237 24563.10201
F2′′ 3040 495450.21 162.9770428 90345.63048
F3′′ 3040 719521.08 236.6845658 194674.2052
F4′′ 3040 665712.29 218.9843059 128230.998
F5′′ 3040 773647.86 254.4894276 146141.255
F51 3040 13288829.86 4371.325612 203910.0092
F43 3040 3461302.57 1138.586372 151192.0733
F53 3040 6767001.43 2225.987313 281385.1082
F54 3040 3305698.86 1087.400941 248551.0132

3.2.2 ANOVA Test

Table 3.4 presents one-way ANOVA (Aalysis Of Variance) test result on the selected vowel.

This test has been performed having the significance level α = 0.05. In the ANOVA test,
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the null hypothesis (all features have the same mean, which further specifies that the data are

not statistically significant) can be rejected if the computed p-value is less the α. Rejection

of null hypothesis means overall the features are statistically significant.

Table 3.4: ANOVA test result on the formant frequency-related features of /অ/[/O/] vowel.

Source of Variation SS DF MS F p-value F critical

Between Groups 49025796372 13 3771215106 26939.26411 0 1.720627056
Within Groups 2906462764 20762 139989.5368

SS: Sum of Squares; DF: Degrees of Freedom; MS: Mean Squares

Here in Table 3.4, the computed p-value is less than α, which means that the features are sta-

tistically significant. Similar to the vowel sample, the same ANOVA test has been performed

on the selected word sample which is illustrated on Table 3.5.

Table 3.5: ANOVA test result on the formant frequency-related features of েবাতল word.

Source of Variation SS DF MS F p-value F critical

Between Groups 1.07459E+11 13 8266089469 51624.44196 0 1.720386039
Within Groups 6812452188 42546 160119.6866

SS: Sum of Squares; DF: Degrees of Freedom; MS: Mean Squares

Here in Table 3.5 for the sample word, we can again observe that the p-value is less than α.

Therefore, overall, the features are statistically significant.

3.2.3 Tukey’s HSD Test and Feature Selection

ANOVA test provides overall results on whether the features are statistically significant or

not. Furthermore, to know which particular features are statistically significant, a post-hoc

test needs to be performed. Among several post-hoc tests, Tukey’s range test or Tukey’s

HSD (Honestly Significant Difference) test compares all features pairwise and provides the

significance level on those individual pairs. Since we have 14 formant frequency-related

features, there are 14C2 = 91 possible pairs for each of the vowels and words. Tukey’s HSD

test rejected the null hypothesis on 87 pairs among all these 91 pairs for the vowel sample

(Table 3.6).
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Table 3.6: Selected Tukey’s HSD pairwise comparison result of vowel formant frequency
where the null hypothesis is not rejected, which means these four pairs are not statistically
significant.

Group 1 Group 2 Mean diff p-adjusted Lower Upper Reject?

F1′′ F2′′ 34.0522 0.4271 -12.019 80.1233 FALSE
F2′′ F3′′ 34.8571 0.3848 -11.2141 80.9282 FALSE
F3′′ F4′′ 36.565 0.3017 -9.5062 82.6361 FALSE
F4′′ F5′′ 23.1155 0.9 -22.9556 69.1867 FALSE

The remaining four pairs mentioned in Table 3.6 are not statistically significant (the null

hypothesis is not rejected). It can be further verified since the adjusted p-value is not less than

α for these four pairs. Except for the four pairs mentioned in the table, the null hypothesis

is rejected for all other 87 pairs (they have the p-adjusted value of around 0.001), which

means all those other pairs are statistically significant. Therefore, these four pairs, which are

formant transitions features, are not statistically significant in the sample vowel.

Table 3.7 reports three selected results from Tukey’s HSD test on the word sample’s formant

frequency-related features. Except for the first two pairs mentioned in the table, the null

hypothesis is rejected for all other 89 pairs, which means all those other pairs are statistically

significant considering α = 0.05. The third pair in Table 3.7 reflects that if we had chosen

α ≤ 0.0357, this pair would have also been considered insignificant.

Table 3.7: Selected Tukey’s HSD pairwise comparison result of word formant frequency
where the null hypothesis is not rejected for the first two pairs mentioned here, which means
these two pairs are not statistically significant.

Group 1 Group 2 Mean diff p-adjusted Lower Upper Reject?

F3′′ F4′′ -17.7003 0.9 -52.1239 16.7234 FALSE
F3′′ F5′′ 17.8049 0.9 -16.6188 52.2285 FALSE
F4′′ F5′′ 35.5051 0.0357 1.0815 69.9288 TRUE

Therefore, the above statistical analyses on the vowel and word samples reveal that three

formant transitions (F3′′, F4′′, and F5′′) are not statistically significant features. The other

two transitions (F1′′ and F2′′) are not significant in the vowel sample, but they appeared

significant in the word sample. All other formant frequency-related features (five formants

and five dispersions) are statistically significant.
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3.3 Input Features and Hidden Layers Variation

Both vowel and word classification are performed by varying the number of input feature

vectors and hidden layers. The classification model initializes its parameters randomly as

discussed in Subsection 2.3.4, so four-fold cross-validation is utilized to accommodate the

dependency of the model’s performance on initialization parameters. The cross-validated

(average) scores are shown in Table 3.8 with corresponding standard deviations in parenthe-

ses.

Table 3.8: Comparison between vowel and word classification performances
by changing the number of feature vectors and hidden layers. The parameters
represent the total number of trainable parameters. It is justified that themetrics
for words have a lower value than that of vowels.

Features1 Layers2 Parameters Type Accuracy AUC-ROC F1 Score Cohen’s κ

5F HL1 1,671 Vowel 0.76 (± 0.00) 0.96 (± 0.00) 0.76 (± 0.00) 0.72 (± 0.00)
Word 0.50 (± 0.01) 0.85 (± 0.00) 0.50 (± 0.01) 0.42 (± 0.01)

HL2 9,479 Vowel 0.84 (± 0.00) 0.98 (± 0.00) 0.84 (± 0.00) 0.81 (± 0.00)
Word 0.57 (± 0.00) 0.89 (± 0.00) 0.57 (± 0.00) 0.50 (± 0.00)

HL3 11,335 Vowel 0.86 (± 0.01) 0.98 (± 0.00) 0.86 (± 0.01) 0.84 (± 0.01)
Word 0.61 (± 0.01) 0.90 (± 0.00) 0.60 (± 0.00) 0.54 (± 0.01)

HL4 11,751 Vowel 0.87 (± 0.01) 0.98 (± 0.00) 0.87 (± 0.01) 0.85 (± 0.01)
Word 0.61 (± 0.01) 0.90 (± 0.00) 0.61 (± 0.01) 0.54 (± 0.01)

HL5 28,263 Vowel 0.89 (± 0.00) 0.99 (± 0.00) 0.89 (± 0.00) 0.87 (± 0.00)
Word 0.64 (± 0.01) 0.91 (± 0.00) 0.63 (± 0.01) 0.57 (± 0.01)

HL6 32,423 Vowel 0.88 (± 0.00) 0.98 (± 0.00) 0.88 (± 0.00) 0.86 (± 0.00)
Word 0.64 (± 0.01) 0.91 (± 0.00) 0.64 (± 0.01) 0.58 (± 0.01)

3F HL5 28,007 Vowel 0.88 (± 0.01) 0.99 (± 0.00) 0.88 (± 0.01) 0.86 (± 0.01)
Word 0.64 (± 0.01) 0.91 (± 0.00) 0.64 (± 0.01) 0.58 (± 0.01)

5F, 5T HL5 28,903 Vowel 0.89 (± 0.01) 0.98 (± 0.00) 0.89 (± 0.01) 0.87 (± 0.01)
Word 0.63 (± 0.01) 0.90 (± 0.00) 0.63 (± 0.01) 0.57 (± 0.01)

5F, 4D HL5 28,775 Vowel 0.89 (± 0.00) 0.98 (± 0.00) 0.89 (± 0.00) 0.87 (± 0.00)
Word 0.64 (± 0.01) 0.91 (± 0.00) 0.64 (± 0.01) 0.58 (± 0.01)

5F, 5T,
4D

HL5 29,415 Vowel 0.89 (± 0.00) 0.98 (± 0.00) 0.89 (± 0.00) 0.87 (± 0.01)
Word 0.64 (± 0.00) 0.90 (± 0.00) 0.64 (± 0.00) 0.58 (± 0.00)

1 5F: Five formant frequency; 3F: First three formant frequency (F1, F2, F3); 5T: Five formant transitions; 4D: Four
formant dispersions

2 HL1: One hidden layer having 128 neurons
2 HL2: Two hidden layers having 128 and 64 neurons, respectively
2 HL3: Three hidden layers having 128, 64, and 32 neurons, respectively
2 HL4: Four hidden layers having 128, 64, 32, and 16 neurons, respectively
2 HL5: Five hidden layers having 128, 128, 64, 32, and 16 neurons, respectively
2 HL6: Six hidden layers having 128, 128, 64, 64, 32, and 16 neurons, respectively

Table 3.8 reports both vowel and word classification scores starting from amodel having only

one hidden layer. Having five formants in the input layer, the vowel classification model

gives an accuracy of 0.76, an AUC-ROC score of 0.96, and so on for other metrics. With
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increasing the number of hidden layers one by one, we can see an increase of performance

till the five-hidden-layered (HL5) model. The low scores for models having less than five

hidden layers indicate that the network was under-fitted (since increasing the number of hid-

den layers to five has increased the overall performance). The parameters of models with

less than five hidden layers were insufficient to cover the acoustical variabilities completely.

The highest scores observed for vowel classifications were from five hidden layers (HL5)

with five formant features in the input. Increasing the number of hidden layers to six did not

improve the performance significantly for both vowel and word classification, which means

the model parameters (of HL5) are now adequate to overcome the acoustical variabilities.

Another thing to note is that the performance at five formant frequencies is very similar to

that at the first three formant frequencies only. The word classification performance on three

formant frequencies is even better. This phenomenon is explainable from Figure 3.4, where

it is clearly visible that the variations of F4 and F5 are significantly less as compared to F1,

F2, and F3. Smaller variations denote that they were more or less the same for all vowels or

all words. Therefore, they did not contribute much to the classification of vowels or words.

Removing F4 and F5 does not hugely reduce the number of parameters as this only reduces

two input neurons. However, it appears than only three formant frequencies (F1, F2, F3) are

sufficient for a satisfactory classification.

Furthermore, it can be concluded that the HL5 configuration is an optimum choice here. In

this case, the performance for vowel classification was 89% accuracy and 99% AUC-ROC,

whereas, for word classification, these scores were 64% and 91%, respectively. It is worth-

while to mention that increasing the number of layers also increases the total number of

trainable parameters. These additional parameters help the model to understand input repre-

sentations in a simpler way. Nevertheless, here is a caveat that more hidden layers increase

the computational burden, which is a crucial limit in implementing speech recognition sys-

tems in low-resource edge devices.

It is shown in the table that incorporating formant transitions and dispersions do not produce

substantial benefits. For all four cases (all features, except dispersions, except transitions, and

formants only), the performance scores are more or less equal to each other for the same five-

hidden-layered (HL5) configuration. Thus, formant transitions and dispersions are not that
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essential features in the vowel or word classification. Therefore, on average, for any DNN

configuration, word classification accuracy depends on the network’s trainable parameters

and poorly depends upon the transition and dispersion of formant. However, in canonical

correlation-based studies, dispersions significantly influence classification [33], [34]. Our

study proves that there is no impact of transitions and dispersions on speech classification.

Therefore, the DNN optimization algorithm is compensating the necessity of including the

formant transitions and dispersions. This result suggests that the hidden layers and neu-

rons extract the underlying dispersion and transitional relationship from the five formant

features, and thus, these dispersions and transitions are unnecessary to consider in classifi-

cation. Hence, the research outcome is that the number of hidden layers should be extended

instead of incorporating formant transitions and dispersions.

3.4 Graphical Comparison Between Vowel and Word Classification

From our previous discussions, we find five as an optimum number of hidden layers. There-

fore, we have primarily utilized that HL5 configuration to graphically illustrate training curves,

validation curves, and performance comparisons between vowel and word classifications.

The loss minimization and accuracy curves during both training and validation phases for

both vowel and word classification are depicted in Figure 3.5. In this case, these figures

came from only five formant frequencies as input vectors since previous experiments did not

find any considerable importance of formant transitions and dispersions.
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(a) Vowel classification.
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(b) Word classification.

Figure 3.5: Loss minimization and accuracy score during training and validation for 300
epochs. With increasing epochs, word’s training and validation curves are being apart from
each other, which denotes that word classification is more overfitting.
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In general, DNNs tend to overfit training data, which can be verified by observing training

and validation curves. If there is a considerable difference between training and validation

curves, it is apparent that the model is suffering from the overfitting issue, which is also

termed as noise-related high variance problem in deep learning literature. Here in our case

for vowel classification, the training and validation curves have a good match, proving there

are fewer higher variational acoustical features in vowels. On the contrary, words have higher

variational acoustical features, as proved by the significant difference between training and

validation curves. In short, lesser overfitting in vowel classification indicates fewer random

acoustical features, whereas higher overfitting in word classification indicates higher random

acoustical features. The vocal tract produces these random acoustical features during word

utterances, and for this reason, the information of dynamic acoustic features is not adequately

modeled like vowel classification.

Now, someone might ask why train up to 300 epochs only? In Figure 3.6, we can see that the

validation curves are not improving (the losses are not decreasing, and the accuracies are not

increasing) after 300 epochs. Instead, the validation performance deteriorates roughly after

300 epochs. Therefore, the model saturates at around 300 epochs. Training more than that

resulted in higher overfitting in both vowel and word classification.
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(a) Vowel classification.
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(b) Word classification.

Figure 3.6: Loss minimization and accuracy score during training and validation up to 700
epochs. After around 300 epochs, the validation scores did not improve. Rather, they worsen,
which justifies training the model up to 300 epochs.

The validation phase’s loss and accuracy curves for training up to 300 epochs have been

compared between the vowel and the word classification (Figure 3.7).
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Figure 3.7: Validation loss and accuracy comparison between the vowel and the word classifi-
cation. Vowel loss is optimized to a smaller value than the word loss, and the vowel accuracy
is higher than the word accuracy.

After 300 epochs, the validation loss in vowel classification went down to 0.3388, whereas

in word classification, it reached 1.0757. Similarly, the final validation accuracy in vowel

classification was 89.94%, whereas, for words, it was only 63.05%. A lower loss indicates

better cost function minimization, and thus, it further states that vowel classification is easier

than word classification. From accuracy comparison, the higher accuracy denotes the higher

rate of correct classification.

The confusion matrices are depicted in Figure 3.8, where top-left to bottom-right diagonal

values represent the percentage of accurate classification for respective labels. If these values

were all one, it would have been the best model.

As shown from the matrices that except for /ঋ/[/ri/] and /ঐ/[/oi/]) vowels, the model’s correct

prediction was above 90%. We observe the best performance (97% correct) for the vowel

classification, particularly for /আ/[/a/] vowel. The vowel classification model’s worst predic-

tion accuracy (79%) was for /ঐ/[/oi/]) vowel. On the contrary, the word classification model’s

best performance (82% correct) was for the েশষ word. In all other words, the model’s per-

formance was comparatively lower than vowel classification. The worst performance (only

45% accurate) was found for the উপের word.

The classification performance of vowels and words is further reported using an advanced

classifier (CNN) using MFCC features to examine how variance is absorbed.
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(b) Word classification.

Figure 3.8: Confusion matrices for the vowel and the word classification using formant fre-
quency features. It indicates that the vowel classification model is quite suitable for correctly
classifying vowels, but the word classification model is more confused to classify words
correctly.

(a) Loss comparison.

(b) Accuracy comparison.

Figure 3.9: Loss and accuracy comparison between vowel and word classification using a
CNN classification model.
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Figure 3.9a and Figure 3.9b depicts the loss and accuracy comparison between the vowel and

word classification in a CNN classifier having one 2D convolutional layer (followed by a

max-pooling, a dropout, and a flatten layer) and a dense hidden layer of 128 neurons (fol-

lowed by another dropout layer) before the final output layer. The result presents a closer dis-

tance between vowel and word curves for both loss and accuracy metrics. Additionally, there

is a significant increase in word classification accuracy when the CNN is utilized. Therefore

as compared to the DNN model (comparison result in Figure 3.7), CNN provides better per-

formance in terms of absorbing variance.

3.5 Summary

In all cases of Table 3.8, word classification significantly underperforms compared to vowel

classification in all five different performance metrics. Additionally, word classification’s

deficiency is confirmed by comparing loss curves, accuracy curves (Figure 3.7), and confu-

sion matrices (Figure 3.8). The reason behind such classification performance deviation lies

in the variability of acoustical features. Vocal tract dynamics provides linguistic information

related to dynamic acoustical features and random acoustic noises during word production.

Additional parameterized DNNs are required to accommodate these dynamic acoustic fea-

tures in classification and filter out individual articulation gestures of words. Thus, lower

parameterized DNN poorly performs in word classification.

Some specific contributions explained in this chapter are as follows.

1. It demonstrates a process to relegate acoustical variability induced by vocal tract dy-

namics, which is a significant cause behind the performance degradation of sponta-

neous speech recognition.

2. It introduces a DNN-based framework to classify speech tokens and find the optimum

number of hidden layers and input features. It further explain the classification pipeline

with five different performance metrics.

3. It reports that formant transitions and dispersions have no important contribution to

vowel andword classification, although canonical correlation-based studies found their

significance.
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Tripathi et al. [12] obtained 83% speech-mode classification accuracy with vocal tract fea-

tures. It is evident that we should not strongly compare with this study because the datasets

and classification domain are different. However, this comparison proves the applicability

of our DNN-based classification model as we have achieved as high as 89% classification

accuracy for vowel classification.
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CHAPTER IV

Experimental Results: Optimum Number of MFCCs

This chapter reports and explains the findings on experiments to find out optimum number of

MFCCs. In general, the optimum number of MFCC is first examined, then analysis between

hidden layer increase and MFCC increase is presented, and finally, the best classification

performance are extracted, followed by a comparison with related studies. A sketch of the

steps involved in finding out optimum number of MFCCs is depicted in Figure 4.1.

Raw Speech Collection
&

Dataset Preparation

MFCC Extraction
&

Standardization

Searching Optimum Number of MFCC Increasing Number of MFCCs or Number of
Hidden Layers?

Tuning DNN Structure for Best Possible
Classification Score

Optimum Number of MFCCs and DNN
Structure for Bengali Speech Token

Classification

Figure 4.1: Steps involved in finding out optimum number of MFCCs.
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This chapter incorporate three types of experiments (finding the optimum number of MFCC;

suitability between MFCC and hidden layer increase; and securing the best possible score),

and for these, the experimental setups are designed at first. For the classification of vowels

and words, DNN architecture is utilized, and the structure is also tuned to obtain better clas-

sification results. Tuning involves the optimum number of hidden layers, number of neurons

in them, activation functions of respective layers, loss function, optimizer and its learning

rate, batch mode training, batch size, number of epochs, train-test split ratio, and evaluation

metrics or accuracy indexes. In all these cases, there were multiple options, from where the

optimum ones are selected by tracking the evaluation metrics. The descriptions of these steps

are explained in Chapter II. The key steps involved in this chapter are mentioned below.

1. The datasets presented in Section 2.1 Description of the Datasets are processed ac-

cording to Subsection 2.2.2 Mel-Frequency Cepstral Coefficient (MFCC), through

which MFCCs are extracted. Then those features are standardized according to Sub-

section 2.3.1 Feature Standardization.

2. The standard features are then fed to the classification model described in Subsec-

tion 2.3.2 Model Configuration. The following three experiments are performed:

(a) To seek the optimum number of MFCCs, the numbers of MFCC features are

gradually increased from 8 to 28 for both vowel and word classification in the

two-hidden-layered network presented in Figure 2.2.

(b) As we have already discussed in Section 1.1 Background that both increasing

the number of MFCCs and hidden layers raises the computational burden while

enhancing the classification performance, this research also aims to find which

increment is more suitable. For this purpose, the number of hidden layers are in-

creased and corresponding classification metrics are calculated. Then both met-

rics (obtained by increasing the number of MFCCs and hidden layers) are com-

pared based on the number of trainable parameters.

(c) Finally, to elicit the best possible score, the optimum number of MFCCs found in

Item 2a are utilized and then experimented by increasing the number of hidden

layers and the number of neurons in them.
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4.1 Search for Optimum Number of MFCC

The architecture depicted in Figure 2.2 is utilized for demonstrating performances for a vary-

ing number of MFCC for both vowel and word classification. Table 4.1 reports a detailed

comparison with respect to the variation in the number of MFCC features for both vowel and

the word classification.

Table 4.1: Performance comparison with respect to the variation of the number of MFCC
features for both vowel and word classification. The parameters represent the total number
of trainable parameters. It denotes that twenty-five MFCCs seems optimum for both vowel
and word classification. For this whole comparison, the model is trained for 50 epochs in the
DNN configuration of two hidden layers shown in Figure 2.2 with all random initialization
fixed to a seed value of 42.

Type MFCCs Parameters Accuracy AUC-ROC F1 Score Cohen’s κ

Vowel 8 935 0.66 (± 0.01) 0.94 (± 0.00) 0.65 (± 0.01) 0.61 (± 0.01)
10 999 0.70 (± 0.01) 0.95 (± 0.00) 0.68 (± 0.01) 0.64 (± 0.01)
12 1063 0.71 (± 0.01) 0.95 (± 0.01) 0.71 (± 0.01) 0.67 (± 0.01)
13 1095 0.74 (± 0.02) 0.96 (± 0.00) 0.73 (± 0.02) 0.69 (± 0.02)
14 1127 0.75 (± 0.02) 0.96 (± 0.00) 0.74 (± 0.02) 0.71 (± 0.02)
16 1191 0.78 (± 0.01) 0.97 (± 0.00) 0.78 (± 0.01) 0.74 (± 0.01)
18 1255 0.80 (± 0.00) 0.97 (± 0.00) 0.80 (± 0.00) 0.77 (± 0.00)
20 1319 0.82 (± 0.01) 0.98 (± 0.00) 0.82 (± 0.01) 0.79 (± 0.01)
22 1383 0.83 (± 0.01) 0.98 (± 0.00) 0.82 (± 0.01) 0.80 (± 0.01)
24 1447 0.84 (± 0.00) 0.98 (± 0.00) 0.84 (± 0.00) 0.81 (± 0.01)
25 1479 0.83 (± 0.01) 0.98 (± 0.00) 0.83 (± 0.01) 0.81 (± 0.01)
26 1511 0.83 (± 0.01) 0.98 (± 0.00) 0.82 (± 0.01) 0.80 (± 0.01)
27 1543 0.84 (± 0.00) 0.98 (± 0.00) 0.84 (± 0.00) 0.81 (± 0.00)
28 1575 0.84 (± 0.00) 0.98 (± 0.00) 0.84 (± 0.00) 0.82 (± 0.00)

Word 8 935 0.46 (± 0.00) 0.83 (± 0.00) 0.44 (± 0.00) 0.37 (± 0.00)
10 999 0.47 (± 0.01) 0.84 (± 0.01) 0.45 (± 0.01) 0.38 (± 0.01)
12 1063 0.49 (± 0.01) 0.85 (± 0.00) 0.47 (± 0.01) 0.40 (± 0.01)
13 1095 0.51 (± 0.01) 0.86 (± 0.00) 0.49 (± 0.01) 0.42 (± 0.01)
14 1127 0.52 (± 0.01) 0.86 (± 0.00) 0.51 (± 0.01) 0.44 (± 0.01)
16 1191 0.51 (± 0.00) 0.86 (± 0.00) 0.50 (± 0.00) 0.43 (± 0.01)
18 1255 0.53 (± 0.01) 0.87 (± 0.00) 0.52 (± 0.01) 0.45 (± 0.01)
20 1319 0.54 (± 0.01) 0.87 (± 0.00) 0.52 (± 0.01) 0.46 (± 0.01)
22 1383 0.55 (± 0.00) 0.88 (± 0.00) 0.54 (± 0.00) 0.47 (± 0.00)
24 1447 0.56 (± 0.01) 0.88 (± 0.00) 0.55 (± 0.01) 0.48 (± 0.01)
25 1479 0.57 (± 0.01) 0.88 (± 0.00) 0.56 (± 0.01) 0.49 (± 0.01)
26 1511 0.56 (± 0.01) 0.88 (± 0.00) 0.55 (± 0.01) 0.48 (± 0.01)
27 1543 0.57 (± 0.01) 0.88 (± 0.00) 0.56 (± 0.01) 0.49 (± 0.01)
28 1575 0.56 (± 0.00) 0.88 (± 0.00) 0.56 (± 0.00) 0.49 (± 0.00)

Since the performance of the model may vary at different runtimes, four-fold cross-validation

is utilized, and the average scores of these four runtimes are shown in Table 4.1 along with

the standard deviation in parentheses. While comparing, all random initializations are fixed



CHAPTER IV. Experimental Results: Optimum Number of MFCCs 41

from a constant seed value of 42. This technique ensures the reproducibility of identical

performance scores in multiple runtimes. For this comparison table, the two-hidden-layered

network was trained for 50 epochs.

For both vowel and word classification, the performance scores increase with an increasing

number of MFCCs. For vowel classification, they were highest for 24 MFCCs in input,

whereas for word classification, the highest scores of the same metrics were observed for 25

MFCCs in input. From 13 MFCCs to 25 MFCCs, vowel shows 0.83− 0.74 = 0.09 i.e. 9%,

and word shows 0.57 − 0.51 = 0.06 i.e. 6% increase in overall accuracy. It is seen from

Table 4.1 that 24 MFCCs takes less parameters and provides better accuracy and F1 score

for vowels, and provides lower accuracy, F1 score, and Cohen’s κ for words compared to 25

MFCCs, although the difference is much smaller. One can use either 24 or 25 MFCCs for

their evaluation, but 25 MFCCs are chosen for being consistent.

4.2 MFCC Increase vs. Hidden Layer Increase

It is apparent that increasing the number of hidden layers should also increase the perfor-

mance, and that is why the same classification experiment is performed with three hidden

layers (Table 4.2), and as expected, the performance increased. However, the use of three

hidden layers increases the number of trainable parameters, thereby increasing computational

burden, which is a crucial limit in implementing speech recognition systems in low-resource

devices, such as microcontrollers and Arduino.

Table 4.2: Performance comparison with increasing the number of hidden lay-
ers at 13 MFCCs. The model was cross-validated (4-fold) and trained for 50
epochs.

Type Model Parameters Time (sec)c Accuracy AUC-ROC F1 Score Cohen’s κ

Vowel HL2a 1095 5.40 0.74 (± 0.02) 0.96 (± 0.00) 0.73 (± 0.02) 0.69 (± 0.02)
HL3b 3623 5.88 0.79 (± 0.01) 0.97 (± 0.00) 0.79 (± 0.01) 0.76 (± 0.01)

Word HL2 1095 5.83 0.51 (± 0.01) 0.86 (± 0.00) 0.49 (± 0.01) 0.42 (± 0.01)
HL3 3623 6.29 0.55 (± 0.01) 0.89 (± 0.00) 0.55 (± 0.01) 0.48 (± 0.01)

a HL2: Two hidden layers having 32 and 16 neurons, respectively
b HL3: Three hidden layers having 64, 32, and 16 neurons, respectively
c Time (sec): The execution time (in seconds) of both the training and validation phase together.

Table 4.2 also reports total execution time (both training and validation phase together) in

an HP Pavilion 14 laptop with 64-bit Linux Mint 19.3 OS, 8 GB RAM, 1.7 GHz Intel Core
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i5-4210U Processor, and NVIDIA GM108M [GeForce 830M] 2 GB Graphics. As shown

in the table, for vowel classification employing 13 MFCCs, two hidden layers to three hid-

den layers introduce 5% increase in accuracy, 1% increase in AUC-ROC, 6% increase in F1

Score, and 7% increase in Cohen’s κ. At the same time, these performance increases require

3623 − 1095 = 2528 additional trainable parameters. Similar increases of performances in

three hidden layers is comparable to 16 or 17 MFCCs of Table 4.1. Therefore, if we increase

the number of MFCCs to increase the performances, it would cost only 1191 − 1095 = 96

additional trainable parameters. As compared to execution time, 16 MFCCs required only

5.53 seconds which is also less than the execution time in three-hidden-layered configuration

(HL3). Comparing these additional parameters in two cases, we can comment that increas-

ing MFCCs is computationally efficient than increasing hidden layers since more trainable

parameters require more time and computational power to do the classification. Word clas-

sification also depicts similar results. An increase of 4% classification accuracy can be done

either by additional 2528 parameters if we want to increase the number of hidden layers or

by additional 1383 − 1095 = 288 parameters if we want to increase the number of MFCCs

to 22. As for execution time, 22 MFCCs took only 5.75 seconds, less than what it took for

HL3. Accordingly, this guides us to increase the number of MFCCs rather than the number

of hidden layers. The analysis further suggests that the optimum number of MFCCs could

be 24 or 25, although the optimum number of MFCCs is well-known to be 13.

In a search for the optimum number of MFCCs in English and Portuguese digit classifica-

tion, Silva et al. [9] reported a decrease in performance after 25 MFCCs, and they concluded

that the optimum number of coefficients has a narrow range between 11 to 23 MFCCs. Our

findings also comply with it. Authors in [10] also experimented by varying the number of

MFCCs and other parameters to find the best configuration for a low-resource embedded

system. They experimented with 8, 9, and 10 MFCCs, and concluded that 9 MFCCS are

suitable in accordance with other parameter tuning such as the number of filters and num-

ber of HMM states. A significant reason behind choosing 9 MFCCs was less training and

recognition time, particularly for low-resource embedded systems they considered.
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4.3 Search for Best Scores

The classification performances have a proportional relationship with the number of MFCCs

and the number of hidden layers. According to the previous discussions (Section 4.2 MFCC

Increase vs. Hidden Layer Increase), to enhance the classification score, we have to first

concentrate on incorporating the optimum number of MFCC, and then, we should extend the

number of hidden layers. As we already concluded that 25 MFCCs would be the optimum

number ofMFCCs, the number of hidden layers is increasedwhile utilizing 25MFCCs shown

in Table 4.3.

Table 4.3: Best performance scores with increasing the number of
hidden layers at 25 MFCCs. The evaluation metrics are 4-fold cross-
validated.

Type Model Accuracy AUC-ROC F1 Score Cohen’s κ

Vowel HL2
a 0.96 (± 0.00) 1.00 (± 0.00) 0.96 (± 0.00) 0.95 (± 0.00)

HL4
b 0.99 (± 0.00) 1.00 (± 0.00) 0.99 (± 0.00) 0.98 (± 0.00)

HL5
c 0.99 (± 0.00) 1.00 (± 0.00) 0.99 (± 0.00) 0.98 (± 0.00)

Word HL2 0.75 (± 0.01) 0.96 (± 0.00) 0.75 (± 0.01) 0.71 (± 0.01)
HL4 0.89 (± 0.01) 0.98 (± 0.00) 0.89 (± 0.01) 0.87 (± 0.01)
HL5 0.91 (± 0.01) 0.98 (± 0.00) 0.91 (± 0.01) 0.90 (± 0.01)

a HL2: Two hidden layers having 32 and 16 neurons, respectively
b HL4: Four hidden layers having 128, 64, 32, and 16 neurons, respectively
c HL5: Five hidden layers having 128, 128, 64, 32, and 16 neurons, respectively

While increasing the number of hidden layers, five hidden layers are found as optimum since

performance scores did not increase for six and more hidden layer configurations. A vary-

ing number of hidden neurons is checked in the configurations shown in Table 4.3, but the

reported configurations were found optimum. Finally, the model is trained for 300 epochs to

extract the best possible scores, which resulted in 99% and 91% classification accuracies for

vowels and words, respectively.

For the best scores, Figure 4.2a and Figure 4.2b depict the loss minimization and accuracy

score curves during both training and validation phases for both vowel and word classifica-

tion, respectively. Since there is no large difference between training and validation curves

for vowel classification, the model is not overfitting.
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(a) Vowel classification.
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(b) Word classification.

Figure 4.2: Lossminimization and accuracy score during training and validating usingMFCC
features. The classification model consists of five hidden layers.

The smoother curves for vowel classification (Figure 4.2a) indicate proper tuning of model

hyperparameters. It further means that the formation of the DNN classifier is good enough

to have such a good model. However, for word classification, there are some differences

between training and validation losses shown in Figure 4.2b. A possible reason behind this

is the presence of more dynamic acoustical features in words [89].

Classification performance for individual labels can be identified from the confusionmatrices

shown in Figure 4.3. The top-left to bottom-right diagonal elements in the matrix represent

the accurate classification rate for respective classes.
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(b) Word classification.

Figure 4.3: Confusion matrices for the vowel and the word classification using MFCC fea-
tures. It indicate the classification performances of individual vowels and words.
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As shown from thematrices, vowel classificationwas perfect with 100% accuracy for /অ/[/O/],

/আ/[/a/], /উ/[/u/], and /এ/[/e/] vowels. The class that had the lowest accuracy with this model

was /ই/[/i/], and it was 97% correct. On the contrary, the model’s best performance for the

word classification was for the েশষ word, and it was 97% correct. For all other words, the

model’s performance was quite satisfactory with an 87% classification rate as the lowest

found for উপের word.

4.4 Literature Comparison Based on Number of MFCCs Used

Our main target here is to investigate the number of MFCC features required to achieve the

best classification performance. Table 4.4 reports some relevant studies, where at first, the

DNN-based studies are presented, then the CNN-based studies followed by other approaches

are presented. In each category, the articles are ordered according to the highest classification

performance to the lowest.

Table 4.4 reveals that most of the speech classification researches employ either DNN or

CNN, which is the extended version of DNN architecture added with convolutional layers.

Several studies also utilize the 1st and 2nd derivatives of 13 base MFCCs to consider the

temporal dynamics of the speech signal [39]. Since the recognition domain and datasets are

different, we should not strictly compare the classification performance among these studies.

However, competitive classification performance proves the applicability and suitability of

our model. There are two concrete outcomes from this table—most articles utilized only 13

base MFCCs where our research recommends 24 or 25 MFCCs, and our classification accu-

racy outperforms state-of-the-art scores on vowel recognition. Also, our word classification

accuracy is competitive to similar studies.
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Table 4.4: Comparison with relevant studies based on the used number of MFCCs and
reported classification accuracy. The comparison proves the competitiveness of our clas-
sification model with 25 MFCCs, whereas the general wisdom is to use 13 MFCCs.

Model Article Recognition Domain MFCCs Accuracy

DNN Proposed Seven Bengali vowels 25 99%

Wahyuni [46] Three Arabic words 13 92.42%

Proposed Seven Bengali words 25 91%

Bird et al. [43] English phonemes Not Specified 90.77%

Yang et al. [13] English command words 13 82.46%

Syfullah et al. [20] Bengali speech characters Not Specified 81.61%

Mohamed and Lajish
[45]

Malayalam Vowels 12 74.39%

CNN Sharmin et al. [15] 10 spoken Bengali digits Not Specified 98.37%

Soliman et al. [47] Isolated English words Not Specified 96.19%

Salau et al. [3] Nigerian accent classification 40 94.9%

Hasan and Hasan [89] Isolated Bengali vowels 13 93.93%

Hasan and Hasan [89] Isolated Bengali words 13 90 %

Dawodi et al. [14] Dari speech tokens 13 88.2%

Islam et al. [18] Isolated Bengali speech Not Specified 86.058%

Sumon et al. [21] Ten Bengali short speech words 13 74.01%

SVM Cen et al. [48] Speech emotion 13, ∆, ∆−∆ 90%

CMUSphinx Das et al. [16] Bengali word 13, ∆, ∆−∆ 85.3%

Mandal et al. [17] Bengali speech 13, ∆, ∆−∆ Not Specified

HTK Das et al. [16] Bengali phoneme 13, ∆, ∆−∆ 54.07%

DNN: Deep Neural Network
CNN: Convolutional Neural Network
SVM: Support Vector Machine
CMUSphinx: Open source speech recognition system developed at Carnegie Mellon University
HTK: Hidden Markov Model Toolkit
∆: 1st derivatives of 13 base MFCCs
∆−∆: 2nd derivatives of 13 base MFCCs
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CHAPTER V

Conclusions and Future Works

Speech is a significant natural source of information used in many aspects—speech dictation

gadgets, accent classification, emotion recognition, and disease diagnosis, to name a few.

Therefore, speech-related researches have a meaningful impact on our day-to-day life. Since

audio data cannot be processed directly in many cases, researchers extract valuable informa-

tion from the audio, what we call feature extraction. Formant frequency and MFCC were

chosen as acoustical features for the classification task since they have been widely used by

researchers worldwide. The primary focus of this study is to investigate the effect of vocal

tract dynamics on DNN-based speech recognition using formant frequency. For this, two

separate datasets for seven Bengali vowels and seven Bengali words are utilized. Further-

more, two additional features—formant transitions and dispersions, were also derived from

formant trajectory and used in the classification. As for the classification model, a feedfor-

ward neural network (DNN) was optimized by proper hyperparameter tuning. Five well-

known performance metrics—classification accuracy, AUC-ROC, F1 score, Cohen’s Kappa

(κ), and confusion matrix were utilized to determine the classification performance. Since

the classifications were also performed by varying the number of hidden layers and input

features, this thesis also identified how many hidden layers and which set of features con-

tribute more to the classification. This research found that formant transitions and dispersions

have not introduced any added benefits in classification, and the DNN configuration having

five hidden layers was an optimum choice. Furthermore, statistical analyses using ANOVA

and Tukey’s HSD tests reveal that formant transitions are not statistically significant as well.

Specifically, the third, fourth, and fifth formant transitions are not statistically significant at

all. Word classification performance lagged behind vowel classification by a large margin

in all five metrics in all different tests. Initially, the vocal tract dynamics is checked from

speech waveshapes, formant trajectories, and coefficient of variations of formant frequency.
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From these, it was verified that words consist of more acoustic variability than vowels. Also,

it is well known that during vowel pronunciation, our vocal tract becomes relatively steady,

whereas, for word pronunciation, the vocal tract changes quite rapidly due to coarticulation,

which eventually induces acoustical feature variations. Thus, the variation in words produced

by vocal tract dynamics has lowered the classification performance. However, the amount of

classification performance deviations are not quantified in this study. Future research might

focus on relating these vocal tract dynamics and classification performance deviations quan-

titatively.

The secondary target of this thesis is to find out the optimum number of MFCC features for

a satisfactory classification. Although it is a general wisdom to use the first 13 coefficients,

we put a test to answer the question—how many MFCCs are to be utilized? The same clas-

sification of seven Bengali vowels and seven Bengali words is performed by varying MFCC

numbers from 8 to 28. In a two-hidden-layered DNN model, 13 MFCCs gave 74% vowel

and 51% word classification accuracy, whereas 25 MFCCs gave 83% vowel and 57% word

classification accuracy, from which this thesis recommends that 25 MFCCs could be the op-

timum number of MFCCs. In fact, the general wisdom of 13 MFCCs could serve the same

performance score if we increase the number of DNN hidden layers. However, it increases

the total trainable parameters (computational burden), a limiting factor to implement speech

recognition systems in edge devices like Arduino. With the optimum number of MFCCs dis-

covered in this study, this research further seeks the best possible scores by increasing the

hidden layers. Accordingly, in a five-hidden-layered model, this thesis obtains 99% vowel

and 91%word classification accuracy that is competitive to other similar speech classification

studies.

There are several unique applications of these findings. Such a formant frequency and DNN-

based speech classifier can be employed as an acoustic to sound mapping tool in computa-

tional speech motor movement models. Neurological diseases such as Parkinson’s disease,

Dementia, Alzheimer’s disease, and several other diseases like dysphagia, cleft palate, and

oral cancer induce acoustical variability in the vocal tract. Neurological disorders such as

Parkinson’s and Alzheimer’s disease can be diagnosed by comparing patients’ acoustic vari-

abilities with these (regular Bengali speakers) obtained in this article. Accordingly, such

disease diagnosis schemes might benefit people only speaking the Bengali language. Also,
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the vocal tract dynamics needs to be considered in spontaneous conversational speech recog-

nition since one of the serious reasons behind the lack of progress in spontaneous speech

recognition is this variability. Furthermore, the outcome of this study will be helpful for fu-

ture MFCC-based researches. Employing the optimum number of MFCCs should increase

the overall performance of devices, systems, and research involvingMFCC.Apart from these,

proper detection of these isolated speech tokens has several other applications, including

speech dictation gadgets and services, emotion recognition, accent detection, and assisting

physically-challenged and old-age people. Accordingly, service providers of these gadgets

and services shall serve the Bengali language to their end-users with the aid of this Bengali

speech token classification and the datasets. The information found in this study, particu-

larly formant transitions and dispersions’ no significant contribution to classification, may

be utilized in feature selections in future researches in this domain. Thus, the outcomes of

this research will help better design speech recognition-based devices and systems.
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