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ABSTRACT

Autism spectrum disorder (ASD) is a neuro-developmental
disorder that results in behavioural retardation in verbal com-
munications and social interactions. Traditional ASD detec-
tion methods involve assessing patients’ behavioural patterns
by medical practitioners, which often lack credibility and pre-
cision. The contribution of the current study involves a 3D-
CNN (convolutional neural network) model to diagnose ASD
patients from healthy individuals using functional magnetic
resonance imaging (fMRI) of the brain. We utilised a pub-
licly available dataset, Autism Brain Imaging Data Exchange
(ABIDE I), and tested different CNN-based models in indi-
vidual and combined brain parcellations. Our model showed
a better outcome (74.53% accuracy, 69.98% sensitivity, and
76.00% specificity) for combined parcellations than individ-
uals. Further, we compared our model with several state-of-
the-art models and discussed the suitability of our model for
future prospects. The current model would be a predeces-
sor of future prognosis models or behavioural patterns-based
multi-modal models for early detection of ASD.

Index Terms— Autism, fMRI, Functional connectivity,
CNN, ABIDE I

1. INTRODUCTION

Autism spectrum disorder (ASD) is a common neurodevel-
opmental disease that manifests as communication and so-
cial barriers and progresses towards repetitive and uncontrol-
lable behaviours in daily life. According to the World Health
Organisation (WHO), ASD is affecting one in 160 children
over the world [1]. Since ASD mostly appears in early child-
hood between 6 and 17 years old, it is crucial to diagnose
at early stage to avoid complications [2]. Modern clinics

detect autism based on some codes of conduct, such as the
autism diagnostic observation schedule and autism diagnos-
tic interview-revised. These methods lack objectivity with a
higher rate of misdiagnosis. Moreover, behaviours are com-
plex and should not be utilised as decisive evidence to deter-
mine a disease [3]. To save medical resources, achieve early
diagnosis, and enhance the higher quality of life of ASD peo-
ple and their families, it is an urge to create a more objective
and accurate ASD diagnosis method.

Magnetic resonance imaging (MRI) is a low-cost diag-
nostic tool in the computational medical field [4]. It helps
diagnose brain disorders including epilepsy, Alzheimer’s,
schizophrenia, and autism by analysing functional brain
structure [5]. Since functional MRI (fMRI) can detect cor-
related fluctuations by measuring blood oxygen levels in the
brain, recent studies often aim to explore ASD biomarkers
using fMRI [6]. Functional connectivity has been widely em-
ployed in the progression of brain disorders (e.g., ASD) that
injure ambiguous connections among several brain regions
[6]. By observing the intensity changes of fMRI images onto
a time series, we can quantify the brain activity by a prede-
fined atlas or parcellation technique. Note that a parcellation
technique defines the boundaries of different regions of inter-
est (ROI) and restricts the spatial scale, which becomes easy
to understand and interpret [7]. In this context, a well-known
dataset that contains neuroimaging and phenotypic infor-
mation, for example Autism Brain Imaging Data Exchange
I (ABIDE I), can be used for data-driven autism diagnosis
method [8]. Overall, we present our analysis on ABIDE I
dataset to diagnose ASD from control groups.

Several works have shown a proof of concept to use deep
learning in ASD [4, 9, 10, 11]. Authors in [9] used multi-
atlas deep feature representation with ensemble learning and
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achieved 74.52% accuracy. Graph convolutional networks
(GCNs) achieved 70.40% accuracy to predict autism in [10].
However, their model must be retrained from scratch if a
new subject is added to the analysis. Several works used
fMRI images from ABIDE datasets to classify individuals
with ASD from healthy controls [4, 11]. Authors in [4] used
only Craddock 200 (CC200) atlas in Extra-Trees and support
vector machine (SVM) algorithms. Authors in [11] used
Harvard-Oxford atlas and nine single summary measures
independently as input to a 3D-CNN (convolutional neu-
ral network) ensemble approach. We propose an optimized
ASD identification model using three atlases in a 3D-CNN
configuration.

2. MATERIALS & METHODS

2.1. Dataset & Data Preprocessing

ABIDE I dataset consists of resting-state fMRI images of
1,112 individuals (539 ASD patients and 573 healthy con-
trols) collected from 17 different geo-locations around the
world [8]. The dataset was manually inspected by neurol-
ogy experts, ensuring the authenticity of the overall dataset.
From several pre-processed ABIDE I datasets released by
preprocessed connectomes project1, we chose “Configurable
Pipeline for the Analysis of Connectomes” (C-PAC) pipeline
since it covers the operation of slice timing correction, motion
correction, and voxel intensity normalisation [12]. To remove
fMRI artifacts, resulting from different physiological (e.g.,
head motion, respiration, cardiac pulsation) or mechanical
issues (e.g., low-frequency drifts, global signal), a band-pass
filter of 0.01–0.1Hz was used to preprocess the dataset, which
resulted in 860 rs-fMRI with proper phenotypic annotations.
Overall the final dataset consists of fMRI of 440 ASD indi-
viduals (366 males and 74 females) and 420 controls (361
males and 59 females).

Different studies utilised different atlases to detect ASD.
Authors in [11] and [4] showed Craddock 200 (CC200) and
Craddock 400 (CC400) atlases are more suitable, while au-
thors in [13] reported better performance with the automated
anatomical labeling 116 (AAL116) atlas. As the performance
can differ based on models and hyperparameters, we experi-
mented on all three atlases—AAL116, CC200, and CC400—
to be consistent across the study. We experimented on indi-
vidual atlases and a combination of all three atlases together.

2.2. Architecture of 3D-CNN Model

Figure 1 depicts the elements involved in our proposed
method. We first extracted functional connectivity matrices
from fMRI by computing the connectivity among different
time blocks between each pair of regions of the three brain

1http://preprocessed-connectomes-project.org/
abide/

atlases. These are upper triangular symmetric matrices, with
all the values on the diagonal being one. Each cell in the
matrix is a Pearson correlation coefficient, where 1 represents
the highest correlation between the two areas of the brain, and
−1 represents the lowest. These matrices were the original
feature representations used as CNN models’ input.









  


  

  

  







 

Fig. 1. Overall arrangement for ASD diagnosis from fMRI
images.

In a similar manner applied in [13], we employed a
stochastic sampling method named Poisson disk sampling,
where samples are drawn at a minimum distance apart com-
puted by spatial proximity. The Gray matter was then divided
roughly into equal-sized parcels to prevent them from cross-
ing hemisphere boundaries for the given parcellation scheme.
Since the remaining voxels were assigned to the nearest re-
gional centre, we introduced randomness in the centre of the
ROI. We used the MNI152 template at 3 mm resolution to
process both fMRI data and parcellations combined with the
grey matter tissue with subcortical structures. Furthermore,
we used the cortical mantle mask to construct functional
connectivity profiles.

Fully connected layers connect all units from one layer
to the next, while convolutional layers only connect a unit to
its spatially connected units. The weights of these connec-
tions are shared, which facilitates learning with fewer param-
eters. CNN uses filters to detect image features. Pooling lay-
ers reduce feature maps’ size. One of the widely used pooling
methods is max pooling. It selects maximum features in pre-
fixed local neighbourhoods to represent them.

We constructed CNN architectures with multiple lay-
ers to deal with high-dimensional images. Our experiment
utilised three 3D CNN models for three different parcella-
tions. Though [13] inspired our data processing, we tuned
three distinct CNNs for three atlases, whereas they separately
trained a single model for different atlases. We systemati-
cally changed hyperparameters and tracked performances for
each setting, which guided us to decide on optimized CNNs
for each atlas. We reduced the number of layers and finally
decreased computation cost by controlling the number of pa-
rameters to around 300k. Before trying our model, we also
experimented with some popular computer-vision architec-
tures in 3D versions, such as ResNet-50, VGGNet, and their
variants. However, we obtained poor performance, proving
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that deep and bulky neural networks do not fit this dataset and
the task to some extent.

The input to each CNN model was given by calculating
3D-correlation maps among different atlases that represent
three multi-channel 3D matrices. We created 30 stochastic
parcellations by taking cross-sections through different co-
ordinates and directions, and then we calculated their mean
accuracy as a benchmark. Like [13], we used both atlas-
based and stochastic brain parcellation methods to define tar-
get ROIs in our implementation.

Figure 2 illustrates three CNNs for the three parcellations.
AAL116 CNN consists of average pooling of size 2 and stride
2 in the first layer with the same border mode, which acts as a
downsampling function. It has two convolutional layers with
exponential linear unit (ELU) activation functions. The first
convolutional layer had 64 filters of size 3 in three dimen-
sions, and the second one had 16 filters of the same size ker-
nel. A max-pooling layer of size 2 followed the convolutional
layers in 3 dimensions. The output was flattened and fed to a
dense layer with 16 nodes, and again ELU activation with L2
(0.005) kernel regularisation was applied. The last layer was
fully connected with only one node and sigmoid activation for
final classification for AAL116 atlas.

Dense + Sigmoid
Flatten + Dense + ELU
2×2×2 Max pooling
3×3×3 Conv + ELU
2×2×2 Average pooling

            



 

   

  

  

  

  

   

  

  

  

  

   

  

  

  

  

Fig. 2. Three CNN architectures for AAL116, CC200, CC400
atlases.

We only changed the first convolutional layer’s filter size
to 128 and the second layer’s filter size to 32 in the CC200
CNN model because of its more complicated brain map.
More filters made it possible to learn more precisely and con-
cisely. CC400 CNN was based on CC200 CNN, but one more
layer was added between two previous convolutional layers.
It had 64 filters followed by a max-pooling layer of size 2.

We used binary cross-entropy validation loss and mini-
batch training with 64 batch size. Stochastic gradient descent
(SGD) was the optimiser having 0.001 as the learning rate and
0.9 as the momentum parameter. We ran 50 epochs for each
parcellation. We found the models were overfitting as the
training accuracy approached 100% so fast that when it got to
25 epochs, it had already reached 98%-99% accuracy. Then
we added regularisation having a rate of 0.005 and dropout
in all CNN models to avoid overfitting. In AAL116 CNN,
only one spatial dropout was applied between two convolu-
tional layers. However, for CC200 and CC400 CNNs, another

dropout was applied between two dense fully-connected lay-
ers along with the spatial dropout. All dropout rates were set
to 0.5 after optimising.

Furthermore, we implemented SVM and RF (random for-
est) algorithms on the three parcellation schemes as bench-
marks. We used the “sigmoid” kernel for the SVM classi-
fier, and we chose “sqrt” and “balanced” for max features and
class weight for the RF classifier.

2.3. Evaluation of Model Performance

We used accuracy, specificity, and sensitivity metrics with 5-
fold cross-validation to evaluate our proposed method’s per-
formance. All 860 subjects were divided into five subsets:
one subset was the test set, the others were training sets. Even
though accuracy could be interpreted as the only criteria for
classification tasks, specificity and sensitivity are also signif-
icant to show different aspects of results in clinical expecta-
tion.

3. RESULTS & DISCUSSION

To classify ASD and healthy control, we designed three CNN
architectures for three different parcellations with the pre-
processed ABIDE I dataset. We further combined the three
CNNs to achieve the best accuracy. The total execution time
was about 35h using the GeForce GTX 1050 Ti GPU.

Table 1 shows cross-validated test score of each 3D CNN
for three distinct atlases and the combination of them (we
recorded the trained parameters for each CNN model and
started a new 5-fold cross-validation for the combination
method). We further calculated another evaluation score—
area under the receiver operating characteristic curve—that
was 0.74 for the ensemble CNN model.

Table 1. 5-fold cross-validated results of CNN models on
parcellations.

Accuracy
% (±se)

Sensitivity
% (±se)

Specificity
% (±se)

AAL116 69.53 (±0.05) 67.04 (±0.04) 73.27 (±0.03)
CC200 70.91 (±0.04) 69.83 (±0.02) 73.76 (±0.04)
CC400 71.94 (±0.03) 69.50 (±0.03) 74.01 (±0.02)
Combined 74.53 (±0.04) 69.98 (±0.04) 76.00 (±0.08)

The results confirm the suitability of our design concept.
The combined parcellation scheme consistently performed
better than individual alas-based models. Every atlas has its
outstanding ideas and meaning, and thus, ensemble models—
considering them all and combining their advantages—is a
wise and safer choice for supervised machine learning on
connectomes. Different atlases have their own “tended” net-
work architectures, for which we designed different CNNs
to make them exert their greatest strength. The 3D CNNs
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stored all information from the fMRI data for learning and
training. Specifically, the spatial convolutions captured data’s
structural and topographic features and valuable information
relevant for classification.

According to our analysis, summarising the connectome
data using a single atlas is often sub-optimal for training ma-
chine learning models. An ensemble technique—averaging
various models trained with diverse parcellation schemes—
can produce significantly more accurate predictions.

We also evaluated the performance of SVM and RF clas-
sifiers on the same preprocessed dataset for each atlas. After
hyperparameter tuning, the average accuracy was 69% and
64%, respectively. The results are presented in Table 2 (all
values for each atlas are the mean values of 5-fold valida-
tion). CNN-based architectures proved their selection by out-
performing these two traditional machine learning classifiers
even after optimisation.

Table 2. 5-fold cross-validated accuracy (%) on baseline
methods.

Parcellation SVM RF

AAL116 65.32 63.71
CC200 71.48 61.44
CC400 69.22 65.78

We found that the accuracy fluctuates significantly (high
variation) during training. We analysed the low accuracy
folds and found that the test accuracy decreased remarkably
when the test set included data from several specific sources
(Stanford, UM, Leuven, OHSU, USM, and Yale). Then we
tested our ensemble model on the “filtered” (discarded the
above sites) data set with only 554 subjects; the mean ac-
curacy indeed increased a lot to around 80% with 5-fold
cross-validation. By observing the contents of these data,
surprisingly, we found that their magnitudes are either too
smaller or too larger than others, which we called “outliers”
in the aspect of the dataset. Thus, these outliers have reduced
the overall accuracy.

3.1. Comparative Analysis

To demonstrate the high quality of our proposed method, we
illustrate previously comparative studies in Table 3. Hinted by
the study of [13], we explored a different direction with var-
ious spatial scales and parcellation techniques. Their model
used seven parcellations and the same CNN model to pre-
dict, while our model consists of three different CNN archi-
tectures with dropout rates. We used only ABIDE I dataset
and achieved 74.53% accuracy whereas they used both I and
II datasets and achieved only 72.80% accuracy. Our result
overperformed many previous studies. The most plausible
reason is that we employed three distinct CNN models for
three different atlases, whereas other researchers used either

a single atlas or a single prediction model on multiple atlases.
This area still requires significant effort to reach a more ac-
ceptable accuracy in ASD prediction to help real-life medical
diagnoses.

Table 3. Comparison with previous studies on ASD predic-
tion.
Reference ABIDE

Dataset
Preprocessing
Method

Algorithm Accuracy
(%)

[14] I C-PAC DNN 70
[15] I CCS LSTM 70.10
[16] I C-PAC CNN 70.22
[10] I C-PAC GCN 70.40
[17] I C-PAC Ensemble GCN 70.86
[4] I C-PAC Extra-Trees 72.20
[9] I C-PAC Ensemble MLP 74.52
Proposed I C-PAC 3D-CNN 74.53
[5] I subset

(size: 182)
C-PAC Autoencoder-

DNN
90.39

Authors in [5] achieved 90.39% accuracy using a subset
of the ABIDE I dataset having only 182 subjects from a single
source (NYU Langone Medical Center). Having data from a
single source inherently limits ASD symptoms’ heterogeneity
that would have been solved if data from diverse sources had
been considered (we considered all 17 sources). As discussed
previously, we got higher accuracy after excluding several
sources—proving less diversity indeed gives higher classifi-
cation accuracy—which justifies [5]’s higher accuracy. How-
ever, an efficient ASD identification tool should be trained
from diversified data, making it robust and suitable enough
for a broader area in practical scenarios.

4. CONCLUSION AND FUTURE WORK

To diagnose ASD, we present a detailed analysis of apply-
ing three suitable CNN models for three different atlases on
rs-fMRI data from the ABIDE I dataset. We first calculated
three functional connectivity matrices based on three differ-
ent brain atlases. We applied ensemble learning, where the
individual atlases’ CNN results voted for the final prediction,
which we then compared with the ground truth to calculate
our method’s performance. We achieved 74.53% accuracy,
outperforming state-of-the-results on ASD prediction consid-
ering the full-scale ABIDE dataset. In future, we would at-
tempt to extend our method to more atlases to check its ro-
bustness and applicability. We would evaluate different com-
binations of atlases and deep-learning models for a robust and
trustworthy ASD diagnosis and prognosis system. Moreover,
as we found that excluding several sites brings better results,
we will apply more rules and discipline among site, age, and
sex dimensions while selecting data.
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