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Abstract. This study presents a novel approach to diagnosing the
highly contagious COVID-19 respiratory disease. Traditional diagnosis
methods, such as polymerase chain reaction (PCR) and rapid antigen
test (RAT), have been found to be resource-intensive and expensive,
prompting the need for alternative diagnostic methods. Existing machine
learning-based diagnosis approaches, such as X-rays and CT scans, suf-
fer from suboptimal performance, primarily due to data imbalance and
data paucity. To this end, this study proposes C3-PO, Cough sounds
on Convolutional neural network (CNN) for COVID-19 PredictiOn.
The framework utilises data augmentation and segmentation techniques
to increase the volume of data to more than three times the original
size. It includes an ensemble method to further mitigate the impacts of
data paucity and data imbalances. Our CNN model was tested on the
crowdsourced Coswara dataset and validated by the Russian dataset.
It achieved an accuracy rate of 92.7% and an area under the receiver
operating characteristics curve (AUC-ROC) of 98.1% on the Russian
dataset, exceeding the existing works by 22% in terms of accuracy. On
the Coswara dataset, the method achieved an accuracy rate of 72.3% and
an AUC-ROC of 80.0%. Codes and evaluations are publicly available at
https://github.com/ZakirANU/C3-PO-CovidCough-CNN.

Keywords: COVID-19 · Diagnosis · Cough sound · Convolutional
neural network

1 Introduction

COVID-19 is a novel acute respiratory disease that emerged at the end of 2019
and spread worldwide. As of August 2023, more than 769 million people have
been infected [25], with a death toll reaching 6.9 million. However, the statistics
may fail to illustrate the severity of COVID-19 as there were many notable cases
of under-reporting the infection and mortality data [19].
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In addition to its impact on human health, the quarantine policies and travel
bans implemented to address COVID-19 have dealt a massive blow to global
society and economy. Although the impact of the pandemic on the world is now
fading, COVID-19 has sounded the alarm for the world.

COVID-19 is typically diagnosed using polymerase chain reaction (PCR) and
rapid antigen test (RAT). PCR tests require specialised equipment and medi-
cal personnel, while RAT tests require mass production and are less accurate
than PCR. Traditional detection methods, when dealing with such highly con-
tagious diseases, not only consume huge medical resources and delay the timely
treatment of other patients but also are inefficient and cannot produce quick
results. With the rapid development of machine learning (ML), several stud-
ies [5,10,13] have proposed using ML algorithms to classify biological features
and achieved some success. Furkan et al. [5] utilised CT images combined with
machine vision algorithms to identify COVID-19, reaching an area under the
receiver operating characteristics curve (AUC-ROC) of 95%. Kassania et al. [10]
used X-ray and CT scan images for diagnosis and achieved up to 99% accuracy.
Other studies [1,15] used sound signals for diagnosis. To this end, we aim to
diagnose COVID-19 through cough sounds since sounds are easier to collect and
far more cost-effective than other alternative signals, such as chest X-rays [10]
and CT scans [5].

This paper has three major contributions. (1) To address the challenges
posed by limited data and imbalanced datasets, we employ data augmentation
and segmentation techniques to augment the volume of data. (2) We employ an
ensemble of models to effectively leverage the samples from the majority class.
(3) We propose a novel convolutional neural network (CNN)-based framework,
C3-PO, to diagnose COVID-19 using cough sounds. Our method yields promis-
ing results on the Coswara [21] and Russian [6] datasets.

2 Related Work

2.1 Feasibility

Authors in [24] revealed the difference between medical symptoms of COVID-19
and other respiratory diseases. They observed that even in patients exhibiting
fever, the commonly employed pharyngeal swab PCR test may yield negative
results. This is attributed to the potential absence of viruses in the upper respi-
ratory tract despite the presence of pneumonia. This observation suggests that
COVID-19 may predominantly impact the lower respiratory tract, thereby dis-
tinguishing it from other respiratory diseases that primarily affect the upper
respiratory tract. Using cough sounds, our study leverages theoretical medical
knowledge to diagnose COVID-19.

AI4COVID pipeline [9] uses a nonlinear dimension reduction technique,
t-SNE (t-Distributed Stochastic Neighbor Embedding), to perform two-
dimensional visualisation of the extracted MFCC (Mel-Frequency Cepstral Coef-
ficients) features from cough sounds. This verifies the feasibility of using cough
sounds for COVID-19 diagnosis.
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2.2 Cough Classification

In recent years, diagnostic methods have been proposed using cough sounds or
respiratory sounds, such as the algorithm proposed in [18]. To detect pertussis,
they preprocessed audio using a 3-phase cough model. They leveraged linear
regression models to classify audio features such as MFCC [7], Zero-Crossing
Rate (ZCR), and crest factor and achieved 92% accuracy. Authors in [11] used a
lightweight CNN model on three different modalities (voice, breath and cough)
and achieved approximately 92% accuracy in predicting COVID-19. Further-
more, authors in [20] used an ensemble of CNN models to classify COVID-19
and reported an AUC of 80.7%.

Lack of data has always been an issue for diagnosing COVID-19 from cough
sounds. To address this, the algorithm proposed in [14] uses data augmentation
methods such as pitch shift and time stretch to increase the quantity of data
and improve the model’s robustness. The algorithm improved the AUC-ROC
from 72.23 to 87.07 on the first DiCOVA competition [16] dataset, winning first
place in the competition. [2] discovered that each audio clip in the dataset might
contain multiple cough sounds. As a result, they significantly increased the num-
ber of samples by segmenting the cough audios using root mean square energy
(RMSE). The AI4COVID-19 [9] algorithm first trained CNN on cough detection
datasets and then fine-tuned them on COVID-19 datasets.

To enhance the model’s reliability, several authors have used various tech-
niques. For instance, the AI4COVID-19 [9] algorithm uses three models that
require a unanimous agreement for it to provide a definitive result, reducing
the misdiagnosis probability. Authors in [12] simulated the effects of muscular
degradation on audio samples. They performed the prediction on three different
pre-trained models. The models extract audio features and concatenate them
for classification, which helped them achieve an accuracy of 97.1% on a verified
dataset.

3 Method

3.1 Cough Segmentation

To address issues such as poor generalisation and overfitting caused by the lack of
data, audio samples are segmented, extracting single coughs as samples instead of
whole audio files. This not only increases the number of samples but also removes
useless sound segments, like noise and silence parts. Following the COUGHVID
project [17], we also used RMSE to determine valid audio regions:

RMSE =

√
√
√
√ 1

N

N∑

i=1

(xi − x̄)2 (1)

where xi denotes each sample value in audio signal, x̄ represents the average
value of all sample values, and N represents the number of all sample values.
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Fig. 1. The process of resampling majority set and ensemble models. The majority
subset is divided into multiple subsets to match the minority subset to create multiple
balanced datasets.

3.2 Data Augmentation

Data augmentation techniques are used to further enhance the model’s gener-
alisation capabilities. The algorithm generates a transformed sample for each
original sample, with a variable rate between 0.7–1.40 and 0.9 probability of
being stretched in time, 1 probability of pitch shifting (semitones ranging from
−2 to 4), horizontal shift between −0.5 and 0.5 with 80% probability, trim and
gain probability of 1, and 0.8 probability of polarity inversion. Note that data
augmentation is performed on the training set only.

3.3 Split Majority Set and Ensemble Models

Common losses such as cross-entropy loss function do not consider the issue
of dataset imbalance, which might result in a lack of generalisability and the
model prioritising the majority class samples. To address these issues, a special
method is proposed, an approach similar to [4]. The algorithm samples n subsets
from the majority data set; each subset has the same number of samples as the
minority data set, and these subsets are combined with the minority set to form
n balanced data sets. Figure 1 illustrates the process.

The n datasets are used to train n independent models, and the results yi of
the n models are combined to generate the final output y:

y =
1
n

n∑

i=0

yi (2)

It is worth noting that the segments in the test set may not come from the
same audio source as those in the training set when splitting the training and
test sets.

3.4 Model Architecture

The model architecture (Fig. 2) includes two convolutional layers and three fully
connected layers, with cross-entropy as the loss function. In the network, dropout
layers and batch normalisation layers are added to reduce overfitting. We imple-
ment the model using the Pytorch framework.
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Fig. 2. An illustration of the network architecture. ReLU – Rectified Linear Unit, BN
– Batch Normalisation, FC – Fully Connected.

3.5 Feature Selection

To ensure the effectiveness of the features, a forward selection method was used
to screen the features. The specific steps are listed below:

1. Combine the k features to be adopted with the already adopted features.
2. Perform cross-validation to obtain the accuracy of the k combined features.
3. Compare the accuracy of the k combined features; if all are lower than the

accuracy of the already adopted feature combination, stop selecting new fea-
tures. Otherwise, select the to-be-adopted feature corresponding to the com-
bination feature with the highest accuracy.

4. Return to the first step and iterate.

4 Experiments and Results

4.1 Dataset

This study primarily employs the Coswara dataset [21] and Russian dataset
[6] to train and test the models. The Coswara dataset represents crowdsourced
datasets and has been used in the second DiCOVA Challenge [22]. Each par-
ticipant provided nine different kinds of sound samples in this dataset [3]. The
Russian dataset, on the other hand, is a clinical dataset, implying that a portion
of its data has been medically verified. However, the sample size is much smaller
due to the higher cost of sample collection. The Russian dataset is a partially
validated dataset, so we only take the validated data from the dataset, ensuring
the labels are highly credible. The details of the datasets are provided in Table 1.
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Table 1. Number of samples in the Coswara and the Russian datasets.

Dataset Label Raw Segmentation Augmentation

Coswara Positive 589 1091 2182
Negative 1405 3341 6682
Total 1994 4432 8864

Russian Positive 381 359 718
Negative 438 914 1828
Total 819 1273 2546

Fig. 3. (a) An example of segmenting an audio signal, where the segments marked by
orange line are cropped as useful segments. (b) Histogram of the maximum absolute
value of sounds in the Coswara dataset. (Color figure online)

4.2 Data Preprocessing

In the Russian dataset, some audio files are recorded in stereo channels. We
retain the data from one of the channels based on the size of the RMSE of each
channel’s signal.

In the Coswara dataset, heavy cough data is chosen for diagnosing COVID-
19 since coughing is a significant characteristic of such respiratory diseases,
and heavier cough sounds can provide more detailed information. The sam-
ples labelled as ‘healthy’ are selected as COVID-negative samples, and samples
labelled as ‘positive mild’ and ‘positive moderate’ are selected as COVID-positive
samples. After data cleaning, the dataset consists of 589 positive samples and
1,405 negative samples, totalling 1,994 samples. The number of positive samples
is very small, so resampling the dataset would reduce the total number of sam-
ples to only 1,198. Such a small number of data could easily result in inadequate
generalisation capabilities of the model.

Figure 3a depicts an example of segmenting an audio signal. After the audio
segmentation processing, only the coughing sound is retained, while noises and
blank segments are cut off. The total number of data increases to more than
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twice the original, 4,432, with 1,091 positive samples and 3,341 negative sam-
ples. Finally, data augmentation techniques are applied to each audio segment,
doubling the dataset size to a final count of 8,864 samples, which is 4.45 times
the original. These processes help improve the model’s generalisation ability.

Finally, non-repetitive resampling is conducted on the majority class (Nega-
tive), with the number of samples being the data quantity of the minority class
(Positive). Since the negative sample is more than three times the positive sample
quantity, it is possible to resample three groups of majority subsets equivalent
to the minority quantity without repetition. The resampled majority subsets
are combined with the minority set separately, forming three balanced datasets.
Using three balanced datasets for training allowed us to produce comprehensive
outcomes.

Because of diversified devices and formats, the maximum signal amplitude
and sampling rates can vary significantly, especially in crowd-sourced datasets.
To minimise such sample biases and other biases caused by external factors such
as background noises, volume diversity, etc., the histogram of the maximum
signal values is investigated. As can be seen in Fig. 3b, the maximum value of
most audio is 1, but about 50% of the audio has a maximum value of less than
1. This can increase the convergence time of the model and may affect the final
results. Therefore, resampling and normalisation are performed. In this study,
sounds are resampled to 48,000Hz and normalised to range from −1 to 1.

4.3 Feature Extraction

For each sample, multiple time-domain and frequency-domain features are
extracted, including Mel spectrogram, MFCC, Chromagram, Centroid, Band-
width, Flatness, Rolloff and Contrast.

All the features are extracted with the same frame length and hop length,
thus concatenating all features as a matrix, namely a feature map. Given the
human ear’s sound length resolution is 20–50 ms, the frame length is set to 2,048,
which is approximately 42 ms. The hop length is set to half the frame length,
1024, which allows overlap between frames to prevent the sound signal from
being separated by the frames and the effective features from being extracted.
To select the best set of MFCC features during feature selection, we used the
Librosa Python package to extract 13, 26, and 39 coefficients as three types of
features, which include MFCC features, MFCC differential features, and second-
order differential features.

4.4 Data Analysis

First, we conduct PCA analysis on the original time signals, as shown in Fig. 4.
It can be seen that the first principal component only accounts for 0.014 of the
total proportion, and the boundary between positive and negative samples in
the sample graph drawn with the first two components is also unclear. This
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Fig. 4. PCA explained variance ratio (left) and first two principal components (right)
of time signals in the Russian dataset. The purple points are negative samples, and the
yellow points are positive samples. (Color figure online)

Fig. 5. PCA explained variance ratio (left) and first two principal components (right)
of MFCC features. The purple and the yellow points refer to the negative and positive
samples, respectively. (Color figure online)

suggests that it is difficult to obtain features suitable for classification from the
time signal series or time domain features. All analyses were done using Python
(version 3.8).
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Table 2. 5-fold cross-validation accuracies with feature selection. Each entry represents
the accuracy obtained using the selected features and a new feature. Selected means
the feature is selected, and no more cross-validation is performed.

Features Classification accuracy
Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

39 MFCCs 0.699 Selected Selected Selected Selected
26 MFCCs 0.683 0.687 0.698 0.705 0.716

13 MFCCs 0.683 0.687 0.698 0.704 0.714

Chromagram 0.579 0.698 0.702 0.708 0.720

Mel spectrogram 0.601 0.663 0.673 0.681 0.792

Centroid - 0.697 0.701 0.723 Selected

Bandwidth - 0.705 Selected Selected Selected

Flatness - 0.701 0.712 Selected Selected

Onset - 0.693 0.703 0.698 0.716

ZCR - 0.685 0.702 0.710 0.718

Rolloff - 0.700 0.701 0.709 0.711

Contrast 0.643 0.687 0.700 0.709 0.713

After the feature extraction, PCA performs quite differently. In Fig. 5 (a,
b), the first two components account for over 0.5. In the sample location graph
drawn using the first two components, the distribution of positive and negative
samples is significantly different, with negative samples distributed more towards
the left and positive samples distributed more towards the right. This validates
the effectiveness of MFCC and corroborates our research direction.

However, interestingly, the MFCC feature map extracted from the Coswara
dataset does not perform the same, as shown in Fig. 5 (c, d). Although the first
two components also account for over 0.5, it is difficult to see the difference in
the distribution of positive and negative samples from the drawn position map.
This could be due to greater noise in the Coswara dataset due to crowdsourcing.
The distribution of sample points can be another reason. Despite the difficulty
in differentiating, the successful COVID detection reflects the reliability of our
model.

4.5 Feature Selection

The test accuracies in each feature selection step are recorded in Table 2. As
Centroid, Bandwidth, Flatness, Onset, ZCR, and Rolloff provide less information
and perform poorly as independent training features, only the remaining features
were considered in the first step to optimising run time. Therefore, 39 MFCCs,
centroid, bandwidth and flatness are selected as the optimal feature combination.

4.6 Train and Test Models

Split Dataset. As samples have been segmented, it is possible that different
samples come from the same audio file, making samples in the training set and
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Fig. 6. Classification accuracy (left) and loss (right) during training.

test set similar to each other. To address this, the data are split specifically based
on the source of the samples to ensure that samples from the same source are
not distributed to different datasets.

Hyperparameters. We use Adam optimiser, whose learning rate is set at 1e-4
with β at (0.9, 0.999). The batch size is set to 10, running 20 epochs each time
to find the optimal early stopping scheme, which is usually less than 10 epochs.

Cross Validation. We use 5-fold cross-validation to evaluate the performance
of the model. As shown in Fig. 6, this model shows serious overfitting in later
epochs; we thus impose early stopping techniques to obtain the optimal model.
Therefore, unlike ordinary cross-validation, this paper further divides each fold’s
training set into a training subset and a validation subset. The training subset
is used to train the model, and the validation subset is used to decide the epoch
number to stop training based on the validation result. At last, the final result
of this fold is tested on the test set using the early-stopped model. Here, the
position of early stopping is actually treated as a hyperparameter. Such a nested
structure ensures that the choice of hyperparameters has no correlation with the
test set.

4.7 Results

As shown in Table 3, the proposed model’s test result shows an AUC-ROC of
80.0% and an accuracy of 72.3% on the Coswara dataset. As Coswara is a con-
tinuously updated crowdsourced dataset, articles using Coswara may not nec-
essarily use the same dataset. Therefore, we compare with the results from the
second DiCOVA challenge [22], which also used the Coswara dataset. The pro-
posed model ranked 4th in all results, with a gap of 1.9% from the top AUC-ROC,
indicating there is still room for improvement.

On the Russian dataset, our proposed model, C3-PO, achieves an AUC-
ROC of 98.1%, and an accuracy of 92.7%, outperforming the Covid-Envelope
model [8] by 22%.
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Table 3. Performance comparison with other methods, including the top five teams
from the DiCOVA challenge.

Dataset Reference AUC-ROC Accuracy

Coswara West Lab† 0.819 -
WhyNot† 0.812 -
USTCer† 0.801 -
Team SMILE† 0.790 -
ProPTIT† 0.778 -
DiCOVA Baseline [22] 0.749 -
C3-PO (Ours) 0.800 0.723

Russian Covid-Envelope [8] 0.890 0.683
C3-PO (Ours) 0.981 0.927

† Participants in the 2nd DiCOVA challenge [22]. Par-
ticipants’ results are available at https://competitions.
codalab.org/competitions/34801#results (Track-2).

The difference in performance between the two datasets could be due to var-
ious factors. Firstly, the quality of the Coswara dataset is not as high as that of
the Russian dataset; the voice information may be mixed with noise, and differ-
ences in recording devices and methods can also influence the recording results.
Secondly, it is challenging to verify the annotation of crowdsourced datasets due
to false information by crowdsource participants [23], which means that there
is a possibility that the COVID status uploaded by users does not correspond
with reality.

4.8 Ablation Study

Audio segmentation, data augmentation and the ensemble model are three pri-
mary methods used to handle small data volumes and data imbalance in our
proposed C3-PO framework. To demonstrate the effectiveness of these three
techniques, we perform ablation studies around them. By removing each tech-
nique one by one from the main workflow, we can see from the results the impact
each technique has on model performance. The results recorded in Table 4 indi-
cate that all three techniques contribute to a certain extent to the final perfor-
mance of the model on both the Russian dataset and the Coswara dataset.

In the Coswara dataset, the model’s accuracy is improved by 7.5% through
these three techniques, whereas the improvement on the Russian dataset is only
2.2%. This is because the distribution difference between positive and negative
samples in the Russian dataset is more significant. As we can see, the model can
achieve a 90.5% accuracy rate without additional data preprocessing techniques,
so the remaining room for improvement is limited. In contrast, the distribution of
positive and negative sample data in the Coswara dataset is hard to distinguish
linearly. More samples can help the model better identify the differences between

https://competitions.codalab.org/competitions/34801#results
https://competitions.codalab.org/competitions/34801#results
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Table 4. Ablation study results. Three primary methods are added one by one in
different experiments to find their significance.

Data Method Exp. 1 Exp. 2 Exp. 3 Exp. 4

Cough Segmentation � � �
Data Augmentation � �
Ensemble Models �

Russian AUC-ROC 0.959 0.970 0.975 0.981
Accuracy 0.905 0.918 0.921 0.927

Coswara AUC-ROC 0.731 0.762 0.781 0.800
Accuracy 0.648 0.682 0.707 0.723

positive and negative samples. Notably, the most improvement was seen after
the cough audio segmentation, making it the most effective method among the
three.

5 Conclusion

This study proposes C3-PO, a novel framework to diagnose COVID-19 through
cough sounds. Utilising data augmentation and segmentation techniques, the
volume of data is increased to more than three times the original size to mitigate
the impacts of a small dataset and imbalances within the dataset.

We tested the model on the crowdsourced Coswara dataset and the Russian
dataset. On the Russian dataset, we achieved a state-of-the-art accuracy of 92.7%
and an AUC-ROC of 98.1%, with 22% higher accuracy than the other work in the
literature. On the Coswara dataset, we achieved an accuracy rate of 72.3% and
an AUC-ROC of 80.0%, an AUC-ROC difference of 1.9% compared to the top-
ranked models from the DiCOVA competition. Ablation studies are conducted to
verify the influence of data augmentation, segmentation and ensemble models on
the model’s performance. The results indicate that all three methods positively
contribute to the model’s accuracy.

A limitation of this work is the use of crowdsourced datasets like Coswara,
which run the risk of false or unverified data. A future direction for experimenta-
tion could be the application of transfer learning, transferring experience gained
in other tasks, such as cough detection and speech recognition, into diagnosing
COVID-19.
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